login
This site is supported by donations to The OEIS Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A003281 Numerators of coefficients of Green function for cubic lattice.
(Formerly M5137)
1
0, 1, 23, 1477, 555273, 38466649, 1711814393, 48275151899, 28127429172349, 11820256380127, 61330815490787739, 1438084556561535649, 3452174145433606905, 1300912433743549667989, 275638998008835888305243 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

REFERENCES

G. S. Joyce, The simple cubic lattice Green function, Phil. Trans. Roy. Soc., 273 (1972), 583-610.

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 18 2008, Table of n, a(n) for n = 0..22

FORMULA

Let B1(n) be the sequence of rational numbers defined by the recurrence: 16n(n+1)(2n+1)B1(n+1)-n(60n^2+9)B1(n)+3(2n-1)^3B1(n-1)+(n-1)(2n-1)(2n-3)B1(n-2)=0 n>=1 with B1(0)=0 and B1(1)=1. Then a(n) is the numerator of B1(n) - Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 18 2008

PROG

(PARI) B1=vector(100); B1[4]=1; print1("0, 1, "); for(n=2, 30, B1[n+3]=((n-1)*(60*(n-1)^2+9)*B1[n+2]-3*(2*n-3)^3*B1[n+1]-(n-2)*(2*n-3)*(2*n-5)*B1[n])/(16*(n-1)*n*(2*n-1)); print1(numerator(B1[n+3])", ")) \\ Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 18 2008

CROSSREFS

Sequence in context: A196422 A248703 A264903 * A034243 A183480 A002439

Adjacent sequences:  A003278 A003279 A003280 * A003282 A003283 A003284

KEYWORD

nonn,easy,frac

AUTHOR

N. J. A. Sloane.

EXTENSIONS

More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 18 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 17 14:12 EST 2019. Contains 319225 sequences. (Running on oeis4.)