This site is supported by donations to The OEIS Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A049403 A triangle of numbers related to triangle A030528. 10
 1, 1, 1, 0, 3, 1, 0, 3, 6, 1, 0, 0, 15, 10, 1, 0, 0, 15, 45, 15, 1, 0, 0, 0, 105, 105, 21, 1, 0, 0, 0, 105, 420, 210, 28, 1, 0, 0, 0, 0, 945, 1260, 378, 36, 1, 0, 0, 0, 0, 945, 4725, 3150, 630, 45, 1, 0, 0, 0, 0, 0, 10395, 17325, 6930, 990, 55, 1, 0, 0, 0, 0, 0, 10395, 62370 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,5 COMMENTS a(n,1) = A019590(n) = A008279(1,n). a(n,m) =: S1(-1; n,m), a member of a sequence of lower triangular Jabotinsky matrices, including S1(1; n,m) = A008275 (signed Stirling first kind), S1(2; n,m) = A008297(n,m) (signed Lah numbers). a(n,m) matrix is inverse to signed matrix ((-1)^(n-m))*A001497(n-1,m-1) (signed Bessel triangle). The monic row polynomials E(n,x) := Sum_{m=1..n} a(n,m)*x^m, E(0,x) := 1 are exponential convolution polynomials (see A039692 for the definition and a Knuth reference). Exponential Riordan array [1+x, x(1+x/2)]. T(n,k) = A001498(k+1, n-k). - Paul Barry, Jan 15 2009 LINKS G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened W. Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4. W. Lang, First 10 rows of the array and more. [From Wolfdieter Lang, Oct 17 2008] FORMULA a(n, m) = n!*A030528(n, m)/(m!*2^(n-m)); a(n, m) = (2*m-n+1)*a(n-1, m) + a(n-1, m-1), n >= m >= 1; a(n, m)=0, n < m; a(n, 0) := 0; a(1, 1)=1. E.g.f. for m-th column: ((x*(1+x/2))^m)/m!. a(n,m) = A122848(n,m). - R. J. Mathar, Jan 14 2011 EXAMPLE {1}; {1,1}; {0,3,1}; row polynomial E(3,x)= 3*x^2 + x^3. {0,3,6,1}; ... MAPLE # The function BellMatrix is defined in A264428. # Adds (1, 0, 0, 0, ..) as column 0. BellMatrix(n -> `if`(n<2, 1, 0), 9); # Peter Luschny, Jan 28 2016 MATHEMATICA t[n_, k_] := k!*Binomial[n, k]/((2 k - n)!*2^(n - k)); Table[ t[n, k], {n, 11}, {k, n}] // Flatten (* Second program: *) BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len-1}, {k, 0, len-1}]]; rows = 13; M = BellMatrix[If[#<2, 1, 0]&, rows]; Table[M[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 23 2018, after Peter Luschny *) CROSSREFS Cf. A000085 (row sums). Sequence in context: A255123 A244483 A292727 * A104556 A116089 A122016 Adjacent sequences:  A049400 A049401 A049402 * A049404 A049405 A049406 KEYWORD easy,nonn,tabl AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 17 22:51 EST 2019. Contains 319251 sequences. (Running on oeis4.)