OFFSET
1,4
COMMENTS
From Eduard I. Vatutin, Sep 20 2020: (Start)
A lower bound for odd n is A091323((n-1)/2) <= a(n). (End)
By definition, the main diagonal and antidiagonal of a diagonal Latin square are transversals, so a(n)>=2 for all n>=4 (the two diagonals are the same in the order 1 square and there are no diagonal Latin squares of orders 2 or 3). - Eduard I. Vatutin, Jun 13 2021
All cyclic diagonal Latin squares are diagonal Latin squares, so a(n) <= A348212((n-1)/2) for all orders n of which cyclic diagonal Latin squares exist. - Eduard I. Vatutin, Mar 25 2021
a(10) <= 144, a(11) <= 1721, a(12) <= 448, a(13) <= 43093, a(14) <= 65432, a(15) <= 215721, a(16) <= 7465984. - Eduard I. Vatutin, Mar 11 2021, updated Jul 10 2023
LINKS
E. I. Vatutin, Discussion about properties of diagonal Latin squares at forum.boinc.ru (in Russian).
E. I. Vatutin, About the minimal and maximal number of transversals in diagonal Latin squares of order 9 (in Russian).
Eduard I. Vatutin, Best examples presently known.
E. I. Vatutin, S. E. Kochemazov, and O. S. Zaikin, Estimating of combinatorial characteristics for diagonal Latin squares, Recognition — 2017 (2017), pp. 98-100 (in Russian)
E. I. Vatutin, S. E. Kochemazov, O. S. Zaikin, and S. Yu. Valyaev, Enumerating the Transversals for Diagonal Latin Squares of Small Order. CEUR Workshop Proceedings. Proceedings of the Third International Conference BOINC-based High Performance Computing: Fundamental Research and Development (BOINC:FAST 2017). Vol. 1973. Technical University of Aachen, Germany, 2017. pp. 6-14. urn:nbn:de:0074-1973-0.
E. I. Vatutin, S. E. Kochemazov, O. S. Zaikin, and S. Yu. Valyaev, Using Volunteer Computing to Study Some Features of Diagonal Latin Squares. Open Engineering. Vol. 7. Iss. 1. 2017. pp. 453-460. DOI: 10.1515/eng-2017-0052
E. I. Vatutin, S. E. Kochemazov, O. S. Zaikin, S. Yu. Valyaev, and V. S. Titov, Estimating the Number of Transversals for Diagonal Latin Squares of Small Order, Telecommunications. 2018. No. 1. pp. 12-21 (in Russian).
Eduard I. Vatutin, Natalia N. Nikitina, and Maxim O. Manzuk, First results of an experiment on studying the properties of DLS of order 9 in the volunteer distributed computing projects Gerasim@Home and RakeSearch (in Russian).
E. Vatutin, A. Belyshev, N. Nikitina, and M. Manzuk, Evaluation of Efficiency of Using Simple Transformations When Searching for Orthogonal Diagonal Latin Squares of Order 10, Communications in Computer and Information Science, Vol. 1304, Springer, 2020, pp. 127-146, DOI: 10.1007/978-3-030-66895-2_9.
E. I. Vatutin, N. N. Nikitina, M. O. Manzuk, A. M. Albertyan and I. I. Kurochkin, On the construction of spectra of fast-computable numerical characteristics for diagonal Latin squares of small order, Intellectual and Information Systems (Intellect - 2021). Tula, 2021. pp. 7-17. (in Russian)
E. I. Vatutin, N. N. Nikitina, M. O. Manzuk, I. I. Kurochkin, A. M. Albertyan, A. V. Kripachev, and A. I. Pykhtin, Methods for getting spectra of fast computable numerical characteristics of diagonal Latin squares, Cloud and distributed computing systems in electronic control conference, within the National supercomputing forum (NSCF - 2022). Pereslavl-Zalessky, 2023. pp. 19-23. (in Russian)
E. I. Vatutin, V. S. Titov, A. I. Pykhtin, A. V. Kripachev, N. N. Nikitina, M. O. Manzuk, A. M. Albertyan and I. I. Kurochkin, Estimation of the Cardinalities of the Spectra of Fast-computable Numerical Characteristics for Diagonal Latin Squares of Orders N>9 (in Russian) // Science and education in the development of industrial, social and economic spheres of Russian regions. Murom, 2022. pp. 314-315.
EXAMPLE
From Eduard I. Vatutin, Apr 24 2021: (Start)
For example, diagonal Latin square
0 1 2 3
3 2 1 0
1 0 3 2
2 3 0 1
has 4 diagonal transversals (see A287648)
0 . . . . 1 . . . . 2 . . . . 3
. . 1 . . . . 0 3 . . . . 2 . .
. . . 2 . . 3 . . 0 . . 1 . . .
. 3 . . 2 . . . . . . 1 . . 0 .
and 4 not diagonal transversals
0 . . . . 1 . . . . 2 . . . . 3
. 2 . . 3 . . . . . . 0 . . 1 .
. . 3 . . . . 2 1 . . . . 0 . .
. . . 1 . . 0 . . 3 . . 2 . . .
total 8 transversals. (End)
CROSSREFS
KEYWORD
nonn,more,hard
AUTHOR
Eduard I. Vatutin, May 29 2017
EXTENSIONS
a(8) added by Eduard I. Vatutin, Oct 29 2017
a(9) added by Eduard I. Vatutin, Sep 20 2020
STATUS
approved