login
A182054
Number of independent sets of nodes in the generalized Petersen graph G(2n,2) (n>=0).
1
8, 3, 39, 171, 1055, 5828, 33327, 188499, 1069855, 6065487, 34399844, 195074223, 1106262671, 6273528979, 35576813647, 201753798116, 1144133068159, 6488305791115, 36794770328583, 208660804936031, 1183302172416580, 6710431459264095, 38054430587741959
OFFSET
0,1
LINKS
C. Bautista-Ramos and C. Guillen-Galvan, Fibonacci numbers of generalized Zykov sums, J. Integer Seq., 15 (2012), Article 12.7.8.
Stephan G. Wagner, The Fibonacci Number of Generalized Petersen Graphs, Fibonacci Quarterly, 44 (2006), 362-367.
FORMULA
a(n) = 3*a(n-1)+15*a(n-2)+3*a(n-3)-13*a(n-4)+4*a(n-5) with a(0)=8, a(1)=3, a(2)=39, a(3)=171, a(4)=1055, a(5)=5828.
G.f.: ((6*x^2-11*x-8)*(2*x^3-5*x^2-4*x+1)) / (4*x^5-13*x^4+3*x^3+15*x^2+3*x-1).
CROSSREFS
Cf. A182077.
Sequence in context: A370564 A004734 A287645 * A302214 A049074 A286034
KEYWORD
nonn,easy
AUTHOR
Cesar Bautista, Apr 08 2012
STATUS
approved