OFFSET
0,1
LINKS
Cesar Bautista, Table of n, a(n) for n = 0..499
C. Bautista-Ramos and C. Guillen-Galvan, Fibonacci numbers of generalized Zykov sums, J. Integer Seq., 15 (2012), Article 12.7.8.
Stephan G. Wagner, The Fibonacci Number of Generalized Petersen Graphs, Fibonacci Quarterly, 44 (2006), 362-367.
Index entries for linear recurrences with constant coefficients, signature (3, 15, 3, -13, 4).
FORMULA
a(n) = 3*a(n-1)+15*a(n-2)+3*a(n-3)-13*a(n-4)+4*a(n-5) with a(0)=13,a(1)=76,a(2)=435,a(3)=2461,a(4)=13971.
G.f.: (-4*x^4+23*x^3-12*x^2-37*x-13)/(4*x^5-13*x^4+3*x^3+15*x^2+3*x-1).
MATHEMATICA
LinearRecurrence[{3, 15, 3, -13, 4}, {13, 76, 435, 2461, 13971}, 30] (* Harvey P. Dale, Jul 22 2013 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Cesar Bautista, Apr 10 2012
STATUS
approved