The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A182077 Number of independent sets of nodes in the generalized Petersen graph G(2n+1,2) (n>=1). 1
 13, 76, 435, 2461, 13971, 79197, 449188, 2547179, 14445169, 81917079, 464547653, 2634418076, 14939621779, 84721638085, 480451043995, 2724607324221, 15451075136020, 87622065595371, 496899168779481, 2817883624638175, 15980039054921477, 90621786488479756 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 LINKS Cesar Bautista, Table of n, a(n) for n = 0..499 C. Bautista-Ramos and C. Guillen-Galvan, Fibonacci numbers of generalized Zykov sums, J. Integer Seq., 15 (2012), Article 12.7.8. Stephan G. Wagner, The Fibonacci Number of Generalized Petersen Graphs, Fibonacci Quarterly, 44 (2006), 362-367. Index entries for linear recurrences with constant coefficients, signature (3, 15, 3, -13, 4). FORMULA a(n) = 3*a(n-1)+15*a(n-2)+3*a(n-3)-13*a(n-4)+4*a(n-5) with a(0)=13,a(1)=76,a(2)=435,a(3)=2461,a(4)=13971. G.f.: (-4*x^4+23*x^3-12*x^2-37*x-13)/(4*x^5-13*x^4+3*x^3+15*x^2+3*x-1). MATHEMATICA LinearRecurrence[{3, 15, 3, -13, 4}, {13, 76, 435, 2461, 13971}, 30] (* Harvey P. Dale, Jul 22 2013 *) CROSSREFS Sequence in context: A034265 A282643 A269085 * A269071 A283539 A060717 Adjacent sequences:  A182074 A182075 A182076 * A182078 A182079 A182080 KEYWORD nonn,easy AUTHOR Cesar Bautista, Apr 10 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 10 16:05 EDT 2021. Contains 342845 sequences. (Running on oeis4.)