login
A182077
Number of independent sets of nodes in the generalized Petersen graph G(2n+1,2) (n>=1).
2
13, 76, 435, 2461, 13971, 79197, 449188, 2547179, 14445169, 81917079, 464547653, 2634418076, 14939621779, 84721638085, 480451043995, 2724607324221, 15451075136020, 87622065595371, 496899168779481, 2817883624638175, 15980039054921477, 90621786488479756
OFFSET
0,1
LINKS
C. Bautista-Ramos and C. Guillen-Galvan, Fibonacci numbers of generalized Zykov sums, J. Integer Seq., 15 (2012), Article 12.7.8.
Stephan G. Wagner, The Fibonacci Number of Generalized Petersen Graphs, Fibonacci Quarterly, 44 (2006), 362-367.
FORMULA
a(n) = 3*a(n-1)+15*a(n-2)+3*a(n-3)-13*a(n-4)+4*a(n-5) with a(0)=13,a(1)=76,a(2)=435,a(3)=2461,a(4)=13971.
G.f.: (-4*x^4+23*x^3-12*x^2-37*x-13)/(4*x^5-13*x^4+3*x^3+15*x^2+3*x-1).
MATHEMATICA
LinearRecurrence[{3, 15, 3, -13, 4}, {13, 76, 435, 2461, 13971}, 30] (* Harvey P. Dale, Jul 22 2013 *)
CROSSREFS
Sequence in context: A034265 A282643 A269085 * A269071 A283539 A060717
KEYWORD
nonn,easy
AUTHOR
Cesar Bautista, Apr 10 2012
STATUS
approved