OFFSET
5,2
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 799.
Cornelius Lanczos, Applied Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1956, p. 519.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
T. D. Noe, Table of n, a(n) for n = 5..100
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
Cornelius Lanczos, Applied Analysis (Annotated scans of selected pages)
FORMULA
a(n) = (-1)*A021009(n, 5), n >= 5.
a(n) = ((n!/5!)^2)/(n-5)!, n >= 5.
If we define f(n,i,x) = Sum_{k=i..n} Sum_{j=i..k} binomial(k,j)*Stirling1(n,k)*Stirling2(j,i)*x^(k-j) then a(n) = (-1)^(n-1)*f(n,5,-6), (n>=5). - Milan Janjic, Mar 01 2009
From Amiram Eldar, May 02 2022: (Start)
Sum_{n>=5} 1/a(n) = 375*(gamma - Ei(1)) + 150*e + 175/2, where e = A001113, gamma = A001620, and Ei(1) = A091725.
Sum_{n>=5} (-1)^(n+1)/a(n) = 5225*(gamma - Ei(-1)) - 3100/e - 18125/6, where Ei(-1) = -A099285. (End)
EXAMPLE
G.f. = x^5 + 36*x^6 + 882*x^7 + 18816*x^8 + 381024*x^9 + 7620480*x^10 + ...
MATHEMATICA
Table[((n!/5!)^2)/(n-5)!, {n, 5, 20}] (* T. D. Noe, Aug 10 2012 *)
PROG
(Sage) [factorial(m) * binomial(m, 5) / 120 for m in range(5, 23)] # Zerinvary Lajos, Jul 05 2008
(PARI) for(n=5, 20, print1(((n!/5!)^2)/(n-5)!, ", ")) \\ G. C. Greubel, May 11 2018
(Magma) [((Factorial(n)/Factorial(5))^2)/Factorial(n-5): n in [5..20]]; // G. C. Greubel, May 11 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved