login
A145150
8th column of A145142.
2
1, 36, 870, 18150, 369303, 7698834, 166748153, 3751722975, 87886591793, 2152001539688, 55209634265136, 1483339949950248, 41681455251697936, 1223731327819009800, 37510006764224474480, 1199164490827755488960
OFFSET
9,2
MAPLE
row:= proc(n) option remember; local f, i, x; f:= unapply (simplify (sum ('cat (a||i) *x^i', 'i'=0..n-1) ), x); unapply (subs (solve ({seq(f(i+1)= coeftayl (x/ (1-x-x^4)/ (1-x)^i, x=0, n), i=0..n-1)}, {seq (cat (a||i), i=0..n-1)}), sum ('cat (a||i) *x^i', 'i'=0..n-1) ), x); end: a:= n-> `if` (n=0, 0, coeftayl (row(n)(x), x=0, 8) *(n-1)!): seq (a(n), n=9..26);
MATHEMATICA
row[n_] := row[n] = Module[{f, a, eq}, f = Function[x, Sum[a[k]*x^k, {k, 0, n-1}]]; eq = Table[f[k+1] == SeriesCoefficient[x/(1-x-x^4)/(1-x)^k, {x, 0, n}], {k, 0, n-1}]; List @@ f[1] /. Solve[eq] // First]; a[n_] := row[n][[9]]*(n-1)!; Table[a[n], {n, 9, 26}] (* Jean-François Alcover, Feb 14 2014, after Maple *)
CROSSREFS
Cf. A145153.
Sequence in context: A283199 A346323 A243569 * A166790 A001812 A229680
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Oct 03 2008
STATUS
approved