login
A006912
Theta series of laminated lattice LAMBDA_12^{min}.
(Formerly M5465)
1
1, 0, 624, 3456, 17544, 47616, 130752, 252672, 560904, 887808, 1692576, 2412672, 4280736, 5564928, 9068928, 11460864, 17948424, 21310464, 32009904, 37102464, 54842544, 61519872, 87013440, 96555264, 136860576, 146503680, 200463648, 216131328, 294879552
OFFSET
0,3
COMMENTS
Theta series is an element of the space of modular forms on Gamma_0(8) of weight 6 and dimension 7 over the integers. - Andy Huchala, May 10 2023
REFERENCES
J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 157.
E. C. Pervin, personal communication.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
G. Nebe and N. J. A. Sloane, Home page for this lattice
EXAMPLE
G.f. = 1 + 624*q^4 + 3456*q^6 + ...
PROG
(Magma)
prec := 30;
S := SymmetricMatrix([4, 2, 4, 0, -2, 4, 0, -2, 0, 4, 0, 0, -2, 0, 4, -2, -2, 0, 0, 0, 4, 0, 0, 0, 0, 0, -2, 4, 0, 0, 0, 0, 0, 0, -2, 4, 0, 0, 0, 0, 1, -1, 0, 0, 4, 0, 0, 0, 0, -1, 0, 0, 0, 0, 4, -1, -2, 1, 1, 0, 1, 0, -1, 0, 1, 4, 0, -1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 4]);
L := LatticeWithGram(S);
M := ThetaSeriesModularFormSpace(L);
B := Basis(M, prec);
Coefficients(&+[Coefficients(T)[2*i-1]*B[i] : i in [1..7]]); // Andy Huchala, May 10 2023
CROSSREFS
Sequence in context: A043368 A158374 A349031 * A318939 A223215 A057012
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Andy Huchala, May 10 2023
STATUS
approved