OFFSET
0,3
COMMENTS
This is the q-expansion corresponding to the vector [1, 0, 336, 768, 4950, 6912, 22944, 27648, 75792, 72192, 181728, 158976] in the space of modular forms on Gamma_1(12) with character Kronecker character -3 in modulus 12, weight 5, and dimension 11 over Integer Ring in the basis ordered by degree of leading term (as in Magma).
REFERENCES
J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 157.
E. C. Pervin, personal communication.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Andy Huchala, Table of n, a(n) for n = 0..20000
EXAMPLE
G.f.: 1 + 336*q^4 + 768*q^6 + 4950*q^8 + ...
PROG
(Sage)
e = DirichletGroup(12).1
M = ModularForms(e, 5, QQ)
bases = [_.q_expansion(20) for _ in M.integral_basis()]
list(sum(x*y for (x, y) in zip(bases, [1, 0, 336, 768, 4950, 6912, 22944, 27648, 75792, 72192, 181728, 158976]))) # Andy Huchala, Jun 05 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved