login
A006909
Theta series of laminated lattice LAMBDA_10.
(Formerly M5439)
1
1, 0, 336, 768, 4950, 6912, 22944, 27648, 75792, 72192, 181728, 158976, 393030, 317952, 682656, 557568, 1249686, 912384, 1881840, 1458432, 2979072, 2155776, 4254048, 3055104, 6251808, 4354560
OFFSET
0,3
COMMENTS
This is the q-expansion corresponding to the vector [1, 0, 336, 768, 4950, 6912, 22944, 27648, 75792, 72192, 181728, 158976] in the space of modular forms on Gamma_1(12) with character Kronecker character -3 in modulus 12, weight 5, and dimension 11 over Integer Ring in the basis ordered by degree of leading term (as in Magma).
REFERENCES
J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 157.
E. C. Pervin, personal communication.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
EXAMPLE
G.f.: 1 + 336*q^4 + 768*q^6 + 4950*q^8 + ...
PROG
(Sage)
e = DirichletGroup(12).1
M = ModularForms(e, 5, QQ)
bases = [_.q_expansion(20) for _ in M.integral_basis()]
list(sum(x*y for (x, y) in zip(bases, [1, 0, 336, 768, 4950, 6912, 22944, 27648, 75792, 72192, 181728, 158976]))) # Andy Huchala, Jun 05 2021
CROSSREFS
Sequence in context: A247530 A064259 A181256 * A067708 A377134 A059467
KEYWORD
nonn
STATUS
approved