The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A006906 a(n) is the sum of products of terms in all partitions of n. (Formerly M2575) 73
 1, 1, 3, 6, 14, 25, 56, 97, 198, 354, 672, 1170, 2207, 3762, 6786, 11675, 20524, 34636, 60258, 100580, 171894, 285820, 480497, 791316, 1321346, 2156830, 3557353, 5783660, 9452658, 15250216, 24771526, 39713788, 64011924, 102199026, 163583054, 259745051 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS a(0) = 1 since the only partition of 0 is the empty partition. The product of its terms is the empty product, namely 1. Same parity as A000009. - Jon Perry, Feb 12 2004 REFERENCES G. Labelle, personal communication. N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS Alois P. Heinz, Table of n, a(n) for n = 0..6000 (first 1001 terms from T. D. Noe) Atreya Chatterjee, Emergent gravity from patterns in natural numbers, arXiv:2006.01170 [gr-qc], 2020. Dean Hickerson, Comments on A006906 Robert Schneider and Andrew V. Sills, The product of parts or 'norm' of a partition, #A13 INTEGERS 20A (2020), Theorem 7, p. 4. FORMULA The limit of a(n+3)/a(n) is 3. However, the limit of a(n+1)/a(n) does not exist. In fact, the sequence {a(n+1)/a(n)} has three limit points, which are about 1.4422447, 1.4422491 and 1.4422549. (See the Links entry.) - Dean Hickerson, Aug 19 2007 a(n) ~ c(n mod 3) 3^(n/3), where c(0)=97923.26765718877..., c(1)=97922.93936857030... and c(2)=97922.90546334208... - Dean Hickerson, Aug 19 2007 G.f.: 1 / Product_{k>=1} (1-k*x^k). G.f.: 1 + Sum_{n>=1} n*x^n / Product_{k=1..n} (1-k*x^k) = 1 + Sum_{n>=1} n*x^n / Product_{k>=n} (1-k*x^k). - Joerg Arndt, Mar 23 2011 a(n) = (1/n)*Sum_{k=1..n} A078308(k)*a(n-k). - Vladeta Jovovic, Nov 22 2002 O.g.f.: exp( Sum_{n>=1} Sum_{k>=1} k^n * x^(n*k) / n ). - Paul D. Hanna, Sep 18 2017 O.g.f.: exp( Sum_{n>=1} Sum_{k=1..n} A008292(n,k)*x^(n*k)/(n*(1-x^n)^(n+1)) ), where A008292 is the Eulerian numbers. - Paul D. Hanna, Sep 18 2017 EXAMPLE Partitions of 0 are {()} whose products are {1} whose sum is 1. Partitions of 1 are {(1)} whose products are {1} whose sum is 1. Partitions of 2 are {(2),(1,1)} whose products are {2,1} whose sum is 3. Partitions of 3 are 3 => {(3),(2,1),(1,1,1)} whose products are {3,2,1} whose sum is 6. Partitions of 4 are {(4),(3,1),(2,2),(2,1,1),(1,1,1,1)} whose products are {4,3,4,2,1} whose sum is 14. MAPLE A006906 := proc(n)     option remember;     if n = 0 then         1;     else         add( A078308(k)*procname(n-k), k=1..n)/n ;     end if; end proc: # R. J. Mathar, Dec 14 2011 # second Maple program: b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,        b(n, i-1) +add(b(n-i*j, i-1)*(i^j), j=1..n/i)))     end: a:= n-> b(n, n): seq(a(n), n=0..40);  # Alois P. Heinz, Feb 25 2013 MATHEMATICA (* a[n, k]=sum of products of partitions of n into parts <= k *) a[0, 0]=1; a[n_, 0]:=0; a[n_, k_]:=If[k>n, a[n, n], a[n, k] = a[n, k-1] + k a[n-k, k] ]; a[n_]:=a[n, n] (* Dean Hickerson, Aug 19 2007 *) Table[Total[Times@@@IntegerPartitions[n]], {n, 0, 35}] (* Harvey P. Dale, Jan 14 2013 *) nmax = 40; CoefficientList[Series[Product[1/(1 - k*x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Dec 15 2015 *) nmax = 40; CoefficientList[Series[Exp[Sum[PolyLog[-j, x^j]/j, {j, 1, nmax}]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Dec 15 2015 *) PROG (Haskell) a006906 n = p 1 n 1 where    p _ 0 s = s    p k m s | m

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 15 07:59 EDT 2021. Contains 342975 sequences. (Running on oeis4.)