login
A181256
Number of (n+2)X4 binary matrices with every 3X3 block having exactly four 1's
2
336, 746, 1684, 3942, 10348, 27554, 74784, 212570, 608476, 1755630, 5152996, 15171626, 44814936, 133231586, 396621844, 1182345462, 3533450908, 10565961074, 31613799504, 94685091050, 283660310476, 850017916350, 2548227410836
OFFSET
1,1
COMMENTS
Column 2 of A181262
FORMULA
Empirical: a(n)=4*a(n-1)-3*a(n-2)+32*a(n-3)-128*a(n-4)+96*a(n-5)-375*a(n-6)+1500*a(n-7)-1125*a(n-8)+1980*a(n-9)-7920*a(n-10)+5940*a(n-11)-4644*a(n-12)+18576*a(n-13)-13932*a(n-14)+3888*a(n-15)-15552*a(n-16)+11664*a(n-17).
Empirical formula verified by Robert Israel, Jul 11 2018 (see link).
EXAMPLE
Some solutions for 5X4
..0..1..0..0....1..0..0..1....0..1..0..0....1..0..1..1....0..1..0..0
..0..1..1..0....0..0..1..0....1..0..0..1....1..0..1..0....1..1..0..1
..0..0..1..0....0..1..1..0....0..1..1..0....0..0..0..1....0..1..0..0
..0..1..0..0....0..1..0..0....0..1..0..0....0..1..1..0....1..0..0..1
..1..0..1..1....0..1..0..0....0..0..1..0....1..1..0..0....0..1..1..0
MAPLE
okconfig:= proc(L) andmap(i -> L[i+1]+L[i+2]+L[i+3]+L[i+5]+L[i+6]+L[i+7]<=4, [$0..1]) end proc:
Configs:= select(okconfig, [seq(convert(2^8+i, base, 2)[1..8], i=0..2^8-1)]):
Compatible:= proc(i, j) local k;
if Configs[i][1..4] <> Configs[j][5..8] then return 0 fi;
if add(Configs[i][k], k=[1, 2, 3, 5, 6, 7])+add(Configs[j][k], k=1..3)=4 and
add(Configs[i][k], k=[2, 3, 4, 6, 7, 8])+add(Configs[j][k], k=2..4)=4 then 1 else 0 fi
end proc:
T:= Matrix(213, 213, Compatible):
v:= Vector(213, 1):
TV[0]:= v:
for n from 1 to 30 do TV[n]:= T . TV[n-1] od:
seq(v^%T . TV[n], n=1..30); # Robert Israel, Jul 11 2018
CROSSREFS
Sequence in context: A261551 A247530 A064259 * A006909 A067708 A059467
KEYWORD
nonn
AUTHOR
R. H. Hardin, Oct 10 2010
STATUS
approved