The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A006907 Number of zeros in character table of symmetric group S_n. (Formerly M3394) 7
 0, 0, 1, 4, 10, 29, 55, 153, 307, 588, 1018, 2230, 3543, 6878, 11216, 20615, 33355, 57980, 90194, 155176, 239327, 395473, 604113, 970294, 1453749, 2323476, 3425849, 5349414, 7905133, 11963861, 17521274, 26472001, 38054619, 56756488, 81683457, 119005220, 170498286, 247619748 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 REFERENCES J. McKay, personal communication to N. J. A. Sloane, circa 1991. Alexander R. Miller, "On parity and characters of symmetric groups", J. Combin. Theory Ser. A 162 (2019), 231-240. N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS Alexander R. Miller, On parity and characters of symmetric groups, preprint. MATHEMATICA a[n_] := Count[FiniteGroupData[{"SymmetricGroup", n}, "CharacterTable"], 0, 2]; Array[a, 10] (* Jean-François Alcover, Oct 08 2016 *) PROG (GAP) A006907 := n -> Sum(Irr(CharacterTable("Symmetric", n)), chi -> Number(chi, x->x=0)) # Eric M. Schmidt, Jul 13 2012, simplified Jul 26 2012 CROSSREFS Cf. A006908, A051748, A051749. Sequence in context: A008995 A111236 A164361 * A305204 A327590 A321344 Adjacent sequences:  A006904 A006905 A006906 * A006908 A006909 A006910 KEYWORD nonn,nice AUTHOR EXTENSIONS More terms from Vladeta Jovovic, May 20 2003 More terms from Eric M. Schmidt, Jul 13 2012 a(36)-a(38) found by Alexander R. Miller (see 2019 reference). - N. J. A. Sloane, Jul 07 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 6 19:52 EDT 2020. Contains 336256 sequences. (Running on oeis4.)