This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A000092 Let A(n) = #{(i,j,k): i^2 + j^2 + k^2 <= n}, V(n) = (4/3)Pi*n^(3/2), P(n) = A(n) - V(n); sequence gives values of n where |P(n)| sets a new record. (Formerly M1326 N0508) 9
 1, 2, 5, 6, 14, 21, 29, 30, 54, 90, 134, 155, 174, 230, 234, 251, 270, 342, 374, 461, 494, 550, 666, 750, 810, 990, 1890, 2070, 2486, 2757, 2966, 3150, 3566, 3630, 4554, 4829, 5670, 5750, 8154, 8382, 8774, 8910, 10350, 10710, 15734, 15750, 16302, 17550 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Indices n for which A210641(n) = A117609(n) - A210639(n) yields record values (in absolute value). - M. F. Hasler, Mar 26 2012 REFERENCES N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS W. C. Mitchell, The number of lattice points in a k-dimensional hypersphere, Math. Comp., 20 (1966), 300-310. MATHEMATICA P[n_] := Sum[SquaresR[3, k], {k, 0, n}] - Round[(4/3)*Pi*n^(3/2)]; record = 0; A000092 = Reap[For[n=1, n <= 2*10^4, n++, If[(p = Abs[P[n]]) > record, record = p; Print[n]; Sow[n]]]][[2, 1]] (* Jean-François Alcover, Feb 04 2016, after M. F. Hasler *) PROG (PARI) m=0; for(n=1, 1e4, if(m+0

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 22 04:25 EDT 2019. Contains 328315 sequences. (Running on oeis4.)