login
A309598
Number of extended self-orthogonal diagonal Latin squares of order n with the first row in ascending order.
3
1, 0, 0, 2, 4, 0, 256, 4608
OFFSET
1,4
COMMENTS
A self-orthogonal diagonal Latin square (SODLS) is a diagonal Latin square orthogonal to its transpose. An extended self-orthogonal diagonal Latin square (ESODLS) is a diagonal Latin square that has an orthogonal diagonal Latin square from the same main class. SODLS is a special case of ESODLS.
A333367(n) <= A287761(n) <= a(n) <= A305570(n). - Eduard I. Vatutin, Jun 07 2020
a(10) >= 510566400. - Eduard I. Vatutin, Jul 10 2020
LINKS
FORMULA
From Eduard I. Vatutin, Feb 25 2020: (Start)
a(n) = A287761(n) for 1 <= n <= 6.
a(n) = 4*A287761(n) for 7 <= n <= 8. (End)
a(10) = A309210(10)*A299784(10) because no DSODLS exist for order n=10 and no ESODLS of order n=10 have generalized M-symmetries (automorphisms). - Eduard I. Vatutin, Jul 10 2020
EXAMPLE
The diagonal Latin square
0 1 2 3 4 5 6 7 8 9
1 2 0 4 5 7 9 8 6 3
5 0 1 6 3 9 8 2 4 7
9 3 5 8 2 1 7 4 0 6
4 6 3 5 7 8 0 9 2 1
8 4 6 9 1 3 2 5 7 0
7 8 9 0 6 4 5 1 3 2
2 9 4 7 8 0 3 6 1 5
6 5 7 1 0 2 4 3 9 8
3 7 8 2 9 6 1 0 5 4
has orthogonal diagonal Latin square
0 1 2 3 4 5 6 7 8 9
3 5 9 8 6 2 0 1 4 7
4 3 8 7 2 1 9 0 5 6
6 9 3 4 8 0 1 2 7 5
7 2 0 1 9 3 5 8 6 4
2 0 1 5 7 6 4 9 3 8
8 6 4 2 0 9 7 5 1 3
1 7 6 0 5 4 8 3 9 2
9 8 5 6 1 7 3 4 2 0
5 4 7 9 3 8 2 6 0 1
from the same main class.
CROSSREFS
KEYWORD
nonn,more,hard
AUTHOR
Eduard I. Vatutin, Aug 09 2019
STATUS
approved