The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A309600 Digits of the 10-adic integer (17/9)^(1/3). 36
 7, 1, 6, 8, 7, 0, 3, 3, 3, 6, 5, 2, 7, 8, 7, 2, 6, 7, 1, 1, 0, 3, 3, 2, 4, 5, 6, 5, 3, 6, 5, 3, 3, 3, 7, 5, 2, 4, 7, 5, 0, 2, 9, 0, 6, 7, 0, 8, 8, 6, 6, 7, 0, 1, 2, 4, 5, 3, 2, 8, 6, 9, 7, 3, 1, 6, 6, 9, 5, 0, 1, 6, 4, 6, 8, 0, 3, 8, 5, 9, 6, 1, 3, 5, 3, 7, 9, 7, 2, 3, 6, 6, 9, 0, 0, 0, 5, 3, 7, 7, 2 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 LINKS Seiichi Manyama, Table of n, a(n) for n = 0..10000 FORMULA Define the sequence {b(n)} by the recurrence b(0) = 0 and b(1) = 7, b(n) = b(n-1) + 3 * (9 * b(n-1)^3 - 17) mod 10^n for n > 1, then a(n) = (b(n+1) - b(n))/10^n. EXAMPLE 7^3 == 3      (mod 10).      17^3 == 13     (mod 10^2).     617^3 == 113    (mod 10^3).    8617^3 == 1113   (mod 10^4).   78617^3 == 11113  (mod 10^5).   78617^3 == 111113 (mod 10^6). PROG (PARI) N=100; Vecrev(digits(lift(chinese(Mod((17/9+O(2^N))^(1/3), 2^N), Mod((17/9+O(5^N))^(1/3), 5^N)))), N) (Ruby) def A309600(n)   ary = [7]   a = 7   n.times{|i|     b = (a + 3 * (9 * a ** 3 - 17)) % (10 ** (i + 2))     ary << (b - a) / (10 ** (i + 1))     a = b   }   ary end p A309600(100) CROSSREFS 10-adic integer x. A225404       (x^3 = ...000003). A225405       (x^3 = ...000007). A225406       (x^3 = ...000009). A153042       (x^3 = ...111111). this sequence (x^3 = ...111113). A309601       (x^3 = ...111117). A309602       (x^3 = ...111119). A309603       (x^3 = ...222221). A225410       (x^3 = ...222223). A309604       (x^3 = ...222227). A309605       (x^3 = ...222229). A309606       (x^3 = ...333331). A225402       (x^3 = ...333333). A309569       (x^3 = ...333337). A309570       (x^3 = ...333339). A309595       (x^3 = ...444441). A309608       (x^3 = ...444443). A309609       (x^3 = ...444447). A309610       (x^3 = ...444449). A309611       (x^3 = ...555551). A309612       (x^3 = ...555553). A309613       (x^3 = ...555557). A309614       (x^3 = ...555559). A309640       (x^3 = ...666661). A309641       (x^3 = ...666663). A225411       (x^3 = ...666667). A309642       (x^3 = ...666669). A309643       (x^3 = ...777771). A309644       (x^3 = ...777773). A225401       (x^3 = ...777777). A309645       (x^3 = ...777779). A309646       (x^3 = ...888881). A309647       (x^3 = ...888883). A309648       (x^3 = ...888887). A225412       (x^3 = ...888889). A225409       (x^3 = ...999991). A225408       (x^3 = ...999993). A225407       (x^3 = ...999997). Sequence in context: A060625 A145423 A019796 * A190264 A322663 A231927 Adjacent sequences:  A309597 A309598 A309599 * A309601 A309602 A309603 KEYWORD nonn,base AUTHOR Seiichi Manyama, Aug 09 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 7 19:49 EDT 2020. Contains 333306 sequences. (Running on oeis4.)