login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A000323 Let A(n) = #{(i,j): i^2 + j^2 <= n}, V(n) = Pi*n, P(n) = A(n) - V(n); A000099 gives values of n where |P(n)| sets a new record; sequence gives A(A000099(n)).
(Formerly M3787 N1543)
6
5, 9, 21, 37, 69, 69, 89, 137, 177, 421, 481, 657, 749, 885, 1085, 1305, 1353, 1489, 1861, 2617, 2693, 3125, 5249, 5761, 7129, 8109, 9465, 9465, 10717, 12401, 12401, 16237, 16237, 24833, 30725, 35237, 46701, 47441, 47441, 61493, 67797, 67805, 67805 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

REFERENCES

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

David W. Wilson, Table of n, a(n) for n = 1..200

W. C. Mitchell, The number of lattice points in a k-dimensional hypersphere, Math. Comp., 20 (1966), 300-310.

MATHEMATICA

nmax = 3*10^4; A[n_] := 1 + 4*Floor[Sqrt[n]] + 4*Floor[Sqrt[n/2]]^2 + 8* Sum[Floor[Sqrt[n - j^2]], {j, Floor[Sqrt[n/2]] + 1, Floor[Sqrt[n]]}]; V[n_] := Pi*n; P[n_] := A[n] - V[n]; record = 0; A000099 = Reap[For[k = 0; n = 1, n <= nmax, n++, p = Abs[P[n]]; If[p > record, record = p; k++; Sow[an = A[n]]; Print["a(", k, ") = ", an]; ]]][[2, 1]] (* Jean-Fran├žois Alcover, Feb 07 2016*)

CROSSREFS

Cf. A000099, A000036, A000092, A000413, A000223.

Sequence in context: A147018 A081883 A049744 * A146131 A083943 A097074

Adjacent sequences:  A000320 A000321 A000322 * A000324 A000325 A000326

KEYWORD

nonn

AUTHOR

N. J. A. Sloane.

EXTENSIONS

Entry revised Jun 28 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified May 22 13:09 EDT 2017. Contains 286872 sequences.