login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A006982 Number of unlabeled distributive lattices with n elements.
(Formerly M0700)
5
1, 1, 1, 1, 2, 3, 5, 8, 15, 26, 47, 82, 151, 269, 494, 891, 1639, 2978, 5483, 10006, 18428, 33749, 62162, 114083, 210189, 386292, 711811, 1309475, 2413144, 4442221, 8186962, 15077454, 27789108, 51193086, 94357143, 173859936, 320462062, 590555664, 1088548290, 2006193418, 3697997558, 6815841849, 12563729268, 23157428823, 42686759863, 78682454720, 145038561665, 267348052028, 492815778109, 908414736485 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

REFERENCES

R. Belohlavek, V. Vychodil, Residual lattices of size <=12, Order 27 (2010) 147-161 doi:10.1007/s11083-010-9143-7, Table 6

P. D. Lincoln, personal communication.

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Table of n, a(n) for n=0..49.

M. Erné, J. Heitzig and J. Reinhold, On the number of distributive lattices, Electronic Journal of Combinatorics, 9 (2002), #R24.

D. J. Greenhoe, MRA-Wavelet subspace architecture for logic, probability, and symbolic sequence processing, 2014.

J. Heitzig and J. Reinhold, The number of unlabeled orders on fourteen elements, Order 17 (2000) no. 4, 333-341.

J. Heitzig and J. Reinhold, Counting finite lattices, preprint no. 298, Institut für Mathematik, Universitüt Hanover, Germany, 1999.

J. Heitzig and J. Reinhold, Counting finite lattices, Algebra Universalis, 48 (2002), 43-53.

Institut f. Mathematik, Univ. Hanover, Erne/Heitzig/Reinhold papers

P. Jipsen, N. Lawless, Generating all finite modular lattices of a given size, 2013.

CROSSREFS

Cf. A006981, A006966.

Sequence in context: A151518 A082095 A177486 * A054539 A026702 A000047

Adjacent sequences:  A006979 A006980 A006981 * A006983 A006984 A006985

KEYWORD

hard,nonn,nice

AUTHOR

N. J. A. Sloane

EXTENSIONS

More terms from Jobst Heitzig (heitzig(AT)math.uni-hannover.de), Feb 02 2001. These were computed by the same algorithm that was used to enumerate the posets on 14 elements.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 20 01:54 EST 2018. Contains 317370 sequences. (Running on oeis4.)