|
|
A006982
|
|
Number of unlabeled distributive lattices with n elements.
(Formerly M0700)
|
|
5
|
|
|
1, 1, 1, 1, 2, 3, 5, 8, 15, 26, 47, 82, 151, 269, 494, 891, 1639, 2978, 5483, 10006, 18428, 33749, 62162, 114083, 210189, 386292, 711811, 1309475, 2413144, 4442221, 8186962, 15077454, 27789108, 51193086, 94357143, 173859936, 320462062, 590555664, 1088548290, 2006193418, 3697997558, 6815841849, 12563729268, 23157428823, 42686759863, 78682454720, 145038561665, 267348052028, 492815778109, 908414736485
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,5
|
|
REFERENCES
|
R. Belohlavek, V. Vychodil, Residual lattices of size <=12, Order 27 (2010) 147-161 doi:10.1007/s11083-010-9143-7, Table 6
P. D. Lincoln, personal communication.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
|
|
LINKS
|
Table of n, a(n) for n=0..49.
M. Erné, J. Heitzig and J. Reinhold, On the number of distributive lattices, Electronic Journal of Combinatorics, 9 (2002), #R24.
D. J. Greenhoe, MRA-Wavelet subspace architecture for logic, probability, and symbolic sequence processing, 2014.
J. Heitzig and J. Reinhold, The number of unlabeled orders on fourteen elements, Order 17 (2000) no. 4, 333-341.
J. Heitzig and J. Reinhold, Counting finite lattices, preprint no. 298, Institut für Mathematik, Universität Hanover, Germany, 1999.
J. Heitzig and J. Reinhold, Counting finite lattices, Algebra Universalis, 48 (2002), 43-53.
Institut f. Mathematik, Univ. Hanover, Erne/Heitzig/Reinhold papers
P. Jipsen, N. Lawless, Generating all finite modular lattices of a given size, 2013.
|
|
CROSSREFS
|
Cf. A006981, A006966.
Sequence in context: A151518 A082095 A177486 * A054539 A026702 A000047
Adjacent sequences: A006979 A006980 A006981 * A006983 A006984 A006985
|
|
KEYWORD
|
hard,nonn,nice
|
|
AUTHOR
|
N. J. A. Sloane
|
|
EXTENSIONS
|
More terms from Jobst Heitzig (heitzig(AT)math.uni-hannover.de), Feb 02 2001. These were computed by the same algorithm that was used to enumerate the posets on 14 elements.
|
|
STATUS
|
approved
|
|
|
|