The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A049410 A triangle of numbers related to triangle A049325. 5
 1, 3, 1, 6, 9, 1, 6, 51, 18, 1, 0, 210, 195, 30, 1, 0, 630, 1575, 525, 45, 1, 0, 1260, 10080, 6825, 1155, 63, 1, 0, 1260, 51660, 71505, 21840, 2226, 84, 1, 0, 0, 207900, 623700, 333585, 57456, 3906, 108, 1, 0, 0, 623700, 4573800, 4293135, 1195425, 131670 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS a(n,1)= A008279(3,n-1). a(n,m)=: S1(-3; n,m), a member of a sequence of lower triangular Jabotinsky matrices, including S1(1; n,m)= A008275 (signed Stirling first kind), S1(2; n,m)= A008297(n,m) (signed Lah numbers). a(n,m) matrix is inverse to signed matrix ((-1)^(n-m))*A000369(n,m). The monic row polynomials E(n,x) := sum(a(n,m)*x^m,m=1..n), E(0,x) := 1 are exponential convolution polynomials (see A039692 for the definition and a Knuth reference). Also the inverse Bell transform of the quadruple factorial numbers Product_{k=0..n-1} (4*k+3) (A008545) adding 1,0,0,0,... as column 0. For the definition of the Bell transform see A264428 and for cross-references A265604. - Peter Luschny, Dec 31 2015 LINKS Wolfdieter Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4. FORMULA a(n, m) = n!*A049325(n, m)/(m!*4^(n-m)); a(n, m) = (4*m-n+1)*a(n-1, m) + a(n-1, m-1), n >= m >= 1; a(n, m)=0, n

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 31 07:30 EDT 2020. Contains 334747 sequences. (Running on oeis4.)