login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A062139
Coefficient triangle of generalized Laguerre polynomials n!*L(n,2,x) (rising powers of x).
16
1, 3, -1, 12, -8, 1, 60, -60, 15, -1, 360, -480, 180, -24, 1, 2520, -4200, 2100, -420, 35, -1, 20160, -40320, 25200, -6720, 840, -48, 1, 181440, -423360, 317520, -105840, 17640, -1512, 63, -1, 1814400, -4838400, 4233600
OFFSET
0,2
COMMENTS
The row polynomials s(n,x) := n!*L(n,2,x) = Sum_{m=0..n} a(n,m)*x^m have e.g.f. exp(-z*x/(1-z))/(1-z)^3. They are Sheffer polynomials satisfying the binomial convolution identity s(n,x+y) = Sum_{k=0..n} binomial(n,k)*s(k,x)*p(n-k,y), with polynomials p(n,x) = Sum_{m=1..n} |A008297(n,m)|*(-x)^m, n >= 1 and p(0,x)=1 (for Sheffer polynomials see A048854 for S. Roman reference).
This unsigned matrix is embedded in the matrix for n!*L(n,-2,-x). Introduce 0,0 to each unsigned row and then add 1,-1,1 to the array as the first two rows to generate n!*L(n,-2,-x). - Tom Copeland, Apr 20 2014
The unsigned n-th row reverse polynomial equals the numerator polynomial of the finite continued fraction 1 - x/(1 + (n+1)*x/(1 + n*x/(1 + n*x/(1 + ... + 2*x/(1 + 2*x/(1 + x/(1 + x/(1)))))))). Cf. A089231. The denominator polynomial of the continued fraction is the (n+1)-th row polynomial of A144084. An example is given below. - Peter Bala, Oct 06 2019
FORMULA
T(n, m) = ((-1)^m)*n!*binomial(n+2, n-m)/m!.
E.g.f. for m-th column sequence: ((-x/(1-x))^m)/(m!*(1-x)^3), m >= 0.
n!*L(n,2,x) = (n+2)!*hypergeom([-n],[3],x)/2. - Peter Luschny, Apr 08 2015
From Werner Schulte, Mar 24 2024: (Start)
T(n, k) = (n+k+2) * T(n-1, k) - T(n-1, k-1) with initial values T(0, 0) = 1 and T(i, j) = 0 if j < 0 or j > i.
T = T^(-1), i.e., T is matrix inverse of T. (End)
EXAMPLE
Triangle begins:
1;
3, -1;
12, -8, 1;
60, -60, 15, -1;
360, -480, 180, -24, 1;
2520, -4200, 2100, -420, 35, -1;
...
2!*L(2,2,x) = 12 - 8*x + x^2.
Unsigned row 3 polynomial in reverse form as the numerator of a continued fraction: 1 - x/(1 + 4*x/(1 + 3*x/(1 + 3*x/(1 + 2*x/(1 + 2*x/(1 + x/(1 + x))))))) = (60*x^3 + 60*x^2 + 15*x + 1)/(24*x^4 + 96*x^3 + 72*x^2 + 16*x + 1). - Peter Bala, Oct 06 2019
MAPLE
with(PolynomialTools):
p := n -> (n+2)!*hypergeom([-n], [3], x)/2:
seq(CoefficientList(simplify(p(n)), x), n=0..9); # Peter Luschny, Apr 08 2015
MATHEMATICA
Flatten[Table[((-1)^m)*n!*Binomial[n+2, n-m]/m!, {n, 0, 8}, {m, 0, n}]] (* Indranil Ghosh, Feb 24 2017 *)
PROG
(PARI) tabl(nn) = {for (n=0, nn, for (k=0, n, print1(((-1)^k)*n!*binomial(n+2, n-k)/k!, ", "); ); print(); ); } \\ Michel Marcus, May 06 2014
(PARI) row(n) = Vecrev(n!*pollaguerre(n, 2)); \\ Michel Marcus, Feb 06 2021
(Python)
import math
f=math.factorial
def C(n, r):return f(n)//f(r)//f(n-r)
i=0
for n in range(16):
for m in range(n+1):
i += 1
print(i, ((-1)**m)*f(n)*C(n+2, n-m)//f(m)) # Indranil Ghosh, Feb 24 2017
(Python)
from functools import cache
@cache
def T(n, k):
if k < 0 or k > n: return 0
if k == n: return (-1)**n
return (n + k + 2) * T(n-1, k) - T(n-1, k-1)
for n in range(7): print([T(n, k) for k in range(n + 1)])
# Peter Luschny, Mar 25 2024
CROSSREFS
For m=0..5 the (unsigned) columns give A001710, A005990, A005461, A062193-A062195. The row sums (signed) give A062197, the row sums (unsigned) give A052852.
Sequence in context: A143492 A375046 A243662 * A156366 A144353 A356146
KEYWORD
sign,easy,tabl
AUTHOR
Wolfdieter Lang, Jun 19 2001
STATUS
approved