login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A156366
Triangle of coefficients of p(n, x) where p(n, x) is defined as p(n, x) = (1-3*x)^(n+1)*PolyLog(-n, 3*x)/(3*x), read by rows.
1
1, 1, 1, 3, 1, 12, 9, 1, 33, 99, 27, 1, 78, 594, 702, 81, 1, 171, 2718, 8154, 4617, 243, 1, 360, 10719, 65232, 96471, 29160, 729, 1, 741, 38637, 421713, 1265139, 1043199, 180063, 2187, 1, 1506, 131472, 2382318, 12651390, 21440862, 10649232, 1097874
OFFSET
0,4
FORMULA
T(n, k) = [x^k]( p(n, x) ), where p(n, x) is defined as p(n, x) = (1-3*x)^(n+1)*Sum_{j >= 0} ( (j+1)^n*(3*x)^j ), or p(n, x) = (1-3*x)^(n+1)* PolyLog(-n, 3*x)/(3*x).
From G. C. Greubel, Jan 02 2022: (Start)
T(n, k) = 3^k * Sum_{j=0..k} binomial(n+1, j)*(-1)^j*(k-j+1)^n.
T(n, k) = 3^k * A008292(n, k+1).
T(n, 0) = 1.
T(n, n-1) = 3^n, for n >= 1. (End)
EXAMPLE
Triangle begins as:
1;
1;
1, 3;
1, 12, 9;
1, 33, 99, 27;
1, 78, 594, 702, 81;
1, 171, 2718, 8154, 4617, 243;
1, 360, 10719, 65232, 96471, 29160, 729;
1, 741, 38637, 421713, 1265139, 1043199, 180063, 2187;
1, 1506, 131472, 2382318, 12651390, 21440862, 10649232, 1097874, 6561;
MATHEMATICA
(* First program *)
p[x_, n_]:= (1-3*x)^(1+n)*PolyLog[-n, 3*x]/(3*x);
T[n_]:= CoefficientList[Series[p[x, n], {x, 0, 30}], x];
Table[T[n], {n, 0, 10}]//Flatten (* modified by G. C. Greubel, Jan 02 2022 *)
(* Second program *)
T[n_, k_]:= 3^k*Sum[(k-j+1)^n*Binomial[n+1, j]*(-1)^j, {j, 0, k}];
Join[{1}, Table[T[n, k], {n, 10}, {k, 0, n-1}]]//Flatten (* G. C. Greubel, Jan 02 2022 *)
PROG
(Magma) T:= func< n, k | n eq 0 and k eq 0 select 1 else 3^k*(&+[(-1)^j*Binomial(n+1, j)*(k-j+1)^n: j in [0..k]]) >;
[1] cat [T(n, k): k in [0..n-1], n in [0..10]]; // G. C. Greubel, Jan 02 2022
(Sage)
def T(n, k): return 3^k*sum((-1)^j*binomial(n+1, j)*(k-j+1)^n for j in (0..k))
[1]+flatten([[T(n, k) for k in (0..n-1)] for n in (0..10)]) # G. C. Greubel, Jan 02 2022
CROSSREFS
Sequence in context: A375046 A243662 A062139 * A144353 A356146 A039811
KEYWORD
nonn,tabf
AUTHOR
Roger L. Bagula, Feb 08 2009
EXTENSIONS
Edited by G. C. Greubel, Jan 02 2022
STATUS
approved