login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A156365
T(n, k) = E(n, k)*2^k where E(n,k) are the Eulerian numbers A173018, for n > 0 and 0 <= k <= n-1, additionally T(0,0) = 1.
3
1, 1, 1, 2, 1, 8, 4, 1, 22, 44, 8, 1, 52, 264, 208, 16, 1, 114, 1208, 2416, 912, 32, 1, 240, 4764, 19328, 19056, 3840, 64, 1, 494, 17172, 124952, 249904, 137376, 15808, 128, 1, 1004, 58432, 705872, 2499040, 2823488, 934912, 64256, 256, 1, 2026, 191360
OFFSET
0,4
COMMENTS
Row sums are the Fubini numbers A000670.
Except for the first term same as A142075. - R. J. Mathar, Feb 19 2009
By the definition of the Eulerian numbers it would be natural to add a 0 at the end of the rows if n > 0. - Peter Luschny, Sep 19 2015
FORMULA
Let p(x,n) = (1 - 2*x)^(n + 1) * Sum_{k>=0} 2^k*(k+1)^n*x^k = (1-2*x)^(1 + n)* polylogarithm(-n, 2*x)/(2*x) then T(n,m) are the coefficients of p(x,n).
G.f.: 1/Q(0), where Q(k) = 1 + x*(k+1)/( 1 - y*2*x*(k+1)/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Dec 17 2013
EXAMPLE
Triangle begins:
1;
1;
1, 2;
1, 8, 4;
1, 22, 44, 8;
1, 52, 264, 208, 16;
1, 114, 1208, 2416, 912, 32;
1, 240, 4764, 19328, 19056, 3840, 64;
1, 494, 17172, 124952, 249904, 137376, 15808, 128;
1, 1004, 58432, 705872, 2499040, 2823488, 934912, 64256, 256;
1, 2026, 191360, 3641536, 20965664, 41931328, 29132288, 6123520, 259328, 512;
MAPLE
A156365 := (n, k) -> combinat:-eulerian1(n, k)*2^k:
for n from 0 to 15 do seq(A156365(n, k), k=0..n) od; # Peter Luschny, Sep 19 2015
MATHEMATICA
(* First program *)
p[x_, n_]= (1-2*x)^(n+1)*PolyLog[-n, 2*x]/(2*x);
Table[CoefficientList[p[x, n], x], {n, 0, 10}]
(* Second program: *)
E1[n_ /; n >= 0, 0] = 1; E1[n_, k_] /; k<0 || k>n = 0; E1[n_, k_] := E1[n, k] = (n-k) E1[n-1, k-1] + (k+1) E1[n-1, k];
T[0, 0] = 1; T[n_, k_]:= E1[n, k]*2^k;
Table[T[n, k], {n, 0, 10}, {k, 0, Max[0, n-1]}]//Flatten (* Jean-François Alcover, Dec 30 2018, after Peter Luschny *)
PROG
(Magma)
Eulerian:= func< n, k | (&+[(-1)^j*Binomial(n+1, j)*(k-j+1)^n: j in [0..k+1]]) >;
A156365:= func< n, k | 2^k*Eulerian(n, k) >;
[1] cat [A156365(n, k): k in [0..n-1], n in [0..12]]; // G. C. Greubel, Jun 05 2021
(Sage)
@CachedFunction
def Eulerian(n, k): return sum((-1)^j*binomial(n+1, j)*(k-j+1)^n for j in (0..k+1))
def T(n, k): return 2^k*Eulerian(n, k)
[1]+flatten([[T(n, k) for k in (0..n-1)] for n in (0..12)]) # G. C. Greubel, Jun 05 2021
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Roger L. Bagula, Feb 08 2009
EXTENSIONS
Edited and new name by Peter Luschny, Sep 19 2015
STATUS
approved