login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A156368
A ménage triangle.
1
1, 0, 1, 0, 1, 1, 1, 1, 3, 1, 3, 8, 6, 6, 1, 16, 35, 38, 20, 10, 1, 96, 211, 213, 134, 50, 15, 1, 675, 1459, 1479, 915, 385, 105, 21, 1, 5413, 11584, 11692, 7324, 3130, 952, 196, 28, 1, 48800, 103605, 104364, 65784, 28764, 9090, 2100, 336, 36, 1
OFFSET
0,9
REFERENCES
A. Kaufmann, Introduction à la combinatorique en vue des applications, p.188-189, Dunod, Paris, 1968. - Philippe Deléham, Apr 04 2014
LINKS
FORMULA
T(n, k) = Sum_{j=0..n} (-1)^(k+j)*binomial(j, k)*binomial(2*n-j, j)*(n-j)!.
T(n, 0) = A000271(n).
Sum_{k=0..n} T(n, k) = n!.
Equals A155856*A007318^{-1}.
G.f.: 1/(1 +x -x*y -x/(1 +x -x*y -x/(1 +x -x*y -2*x/(1 +x -x*y -2*x/(1 +x -x*y -3*x/(1 +x -x*y -3*x/(1 +x -x*y -4*x/(1 + ... (continued fraction).
G.f.: Sum_{n>=0} n! * x^n/(1 + (1-y)*x)^(2*n+1). - Ira M. Gessel, Jan 15 2013
EXAMPLE
Triangle begins:
1;
0, 1;
0, 1, 1;
1, 1, 3, 1;
3, 8, 6, 6, 1;
16, 35, 38, 20, 10, 1;
96, 211, 213, 134, 50, 15, 1;
MATHEMATICA
T[n_, k_]:= Sum[(-1)^(k+j)*Binomial[j, k]*Binomial[2*n-j, j]*(n-j)!, {j, 0, n}];
Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Jun 05 2021 *)
PROG
(Sage)
def A156368(n, k): return sum( (-1)^(k+j)*binomial(j, k)*binomial(2*n-j, j)*factorial(n-j) for j in (0..n) )
flatten([[A156368(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 05 2021
CROSSREFS
KEYWORD
easy,nonn,tabl
AUTHOR
Paul Barry, Feb 08 2009
STATUS
approved