OFFSET
0,4
COMMENTS
LINKS
G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Veronica Bitonti, Bishal Deb, and Alan D. Sokal, Thron-type continued fractions (T-fractions) for some classes of increasing trees, arXiv:2412.10214 [math.CO], 2024. See p. 58.
FORMULA
T(n,k) = binomial(2*n-k, k)*(n-k)!.
Sum_{k=0..n} T(n, k) = A155857(n)
Sum_{k=0..floor(n/2)} T(n-k, k) = A155858(n) (diagonal sums).
G.f.: 1/(1-xy-x/(1-xy-x/(1-xy-2x/(1-xy-2x/(1-xy-3x/(1-.... (continued fraction).
From G. C. Greubel, Jun 04 2021:
EXAMPLE
Triangle begins:
1;
1, 1;
2, 3, 1;
6, 10, 6, 1;
24, 42, 30, 10, 1;
120, 216, 168, 70, 15, 1;
720, 1320, 1080, 504, 140, 21, 1;
5040, 9360, 7920, 3960, 1260, 252, 28, 1;
MATHEMATICA
Table[Binomial[2n-k, k](n-k)!, {n, 0, 10}, {k, 0, n}]//Flatten (* Harvey P. Dale, Mar 24 2017 *)
PROG
(Sage) flatten([[factorial(n-k)*binomial(2*n-k, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 04 2021
CROSSREFS
KEYWORD
AUTHOR
Paul Barry, Jan 29 2009
STATUS
approved