login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A138771
Triangle read by rows: T(n,k) is the number of permutations of {1,2,...,n} whose 2nd cycle has k entries; each cycle is written with the smallest element first and cycles are arranged in increasing order of their first elements (n>=1; 0<=k<=n-1). For example, 1432=(1)(24)(3) has 2 entries in the 2nd cycle; 3421=(1324) has 0 entries in the 2nd cycle.
3
1, 1, 1, 2, 3, 1, 6, 11, 5, 2, 24, 50, 26, 14, 6, 120, 274, 154, 94, 54, 24, 720, 1764, 1044, 684, 444, 264, 120, 5040, 13068, 8028, 5508, 3828, 2568, 1560, 720, 40320, 109584, 69264, 49104, 35664, 25584, 17520, 10800, 5040
OFFSET
1,4
COMMENTS
T(n,0)=(n-1)!=A000142(n-1).
T(n,1)=A000254(n-1).
T(n,2)=A001705(n-2).
T(n,3)=2*A001711(n-4).
T(n,4)=6*A001716(n-5).
T(n,n-1)=(n-2)! (n>=2).
Sum(kT(n,k),k=0..n-1)=(n-1)!(n-1)(n+2)/4=A138772(n).
FORMULA
T(n,k)=(n-1)T(n-1,k)+(n-2)! (1<=k<=n-1). The row generating polynomials P[n](t) satisfy: P[n+1](t)=nP[n](t)+(n-1)!(t+t^2+...+t^n).
EXAMPLE
T(4,2)=5 because we have (1)(23)(4), (1)(24)(3), (13)(24), (12)(34) and (14)(23).
Triangle starts;
1;
1,1;
2,3,1;
6,11,5,2;
24,50,26,14,6;
120,274,154,94,54,24;
MAPLE
T:=proc (n, k) if k = 0 then factorial(n-1) elif n <= k then 0 else (n-1)*T(n-1, k)+factorial(n-2) end if end proc: for n to 9 do seq(T(n, k), k=0..n-1) end do;
CROSSREFS
From Johannes W. Meijer, Oct 16 2009: (Start)
A000142 equals for n=>1 the row sums.
a(n) = A165680(n) * A165675(n-1).
(End)
Sequence in context: A155856 A086960 A165675 * A121748 A174893 A008275
KEYWORD
nonn,tabl
AUTHOR
Emeric Deutsch, Apr 10 2008
STATUS
approved