login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A175925
a(n) = (2*n+1)*(n+1)!.
4
1, 6, 30, 168, 1080, 7920, 65520, 604800, 6168960, 68947200, 838252800, 11017036800, 155675520000, 2353813862400, 37922556672000, 648606486528000, 11737685127168000, 224083079700480000, 4500868715126784000
OFFSET
0,2
COMMENTS
The denominators of the Taylor expansion coefficients of the double integral d(u) = int_0^1 dx int_0^1 dy exp(-u^2*(x-y)^2) = Sum_{n>=0} (-1)^n*u^(2n)/a(n).
LINKS
D. H. Bailey, J. M. Borwein, R. E. Crandall, Advances in the theory of box integrals, Math. Comp. 79 (271) (2010) 1839-1866, eq (18).
Milan Janjić, Pascal Matrices and Restricted Words, J. Int. Seq., Vol. 21 (2018), Article 18.5.2.
FORMULA
a(n) = A005408(n)*A000142(n+1) = (n+1)*A007680(n).
E.g.f.: (1 + 3*x)/(1 - x)^3. - Ilya Gutkovskiy, May 12 2017
From Amiram Eldar, Aug 04 2020: (Start)
Sum_{n>=0} 1/a(n) = sqrt(Pi)*erfi(1) + 1 - e.
Sum_{n>=0} (-1)^n/a(n) = sqrt(Pi)*erf(1) - 1 + 1/e. (End)
MAPLE
A := proc(n) (2*n+1)*(n+1)! ; end proc:
MATHEMATICA
Table[(2n+1)(n+1)!, {n, 0, 20}] (* Harvey P. Dale, Sep 30 2011 *)
PROG
(Magma) [(2*n+1)*Factorial(n+1): n in [0..20]]; // Vincenzo Librandi, Oct 11 2011
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
R. J. Mathar, Oct 19 2010
STATUS
approved