The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A110706 Number of linear arrangements of n blue, n red and n green items such that there are no adjacent items of the same color. 15
 1, 6, 30, 174, 1092, 7188, 48852, 339720, 2403588, 17236524, 124948668, 913820460, 6732898800, 49918950240, 372104853600, 2786716100592, 20955408717396, 158149624268220, 1197390368733804, 9091866006950892, 69214297980023256, 528150412279712856 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS The number of circular arrangements is given by A110707 and A110710. LINKS Seiichi Manyama, Table of n, a(n) for n = 0..1110 (terms 1..200 from Vincenzo Librandi) Max Alekseyev, PARI/GP Scripts for Miscellaneous Math Problems. L. Q. Eifler, K. B. Reid Jr., D. P. Roselle, Sequences with adjacent elements unequal, Aequationes Mathematicae (1971), 6 (2-3), 256-262. FORMULA a(n) = 2 *( Sum_{k=0..floor(n/2)} binomial(n-1, k) * ( binomial(n-1, k) * binomial(2n+1-2k, n+1) + binomial(n-1, k+1)*binomial(2n-2k, n+1)) ). a(n) = ((3*n-1)*A000172(n-1) + (3*n+2)*A000172(n))/(n+1). D-finite with recurrence: n*(n+1)*a(n) = (n+1)*(7*n-4)*a(n-1) + 8*(n-2)^2*a(n-2). - Vaclav Kotesovec, Oct 18 2012 a(n) ~ 9*sqrt(3)*2^(3*n-2)/(Pi*n). - Vaclav Kotesovec, Oct 18 2012 G.f.: (2-x)*(1-8*x)^(-1/3)*(x+1)^(-2/3)*hypergeom([1/3, 1/3],[1],27*x^2/(8*x-1)/(x+1)^2) + 3*x*(2*x-1)^2*(1-8*x)^(-4/3)*(x+1)^(-8/3) * hypergeom([4/3, 4/3],[2],27*x^2/(8*x-1)/(x+1)^2) - 2. - Mark van Hoeij, May 14 2013 a(n) = 6*A190917(n) for n >= 1. - R. J. Mathar, Nov 01 2015 MAPLE a:= proc(n) option remember; `if`(n<2, 1+5*n, ((7*n-4)*a(n-1)+8*(n-2)^2*a(n-2)/(n+1))/n) end: seq(a(n), n=0..21); # Alois P. Heinz, Sep 09 2023 MATHEMATICA Table[2*(Sum[Binomial[n-1, k]*(Binomial[n-1, k]*Binomial[2n+1-2k, n+1]+Binomial[n-1, k+1]*Binomial[2n-2k, n+1]), {k, 0, Floor[n/2]}]), {n, 1, 20}] (* Vaclav Kotesovec, Oct 18 2012 *) Table[2 (Binomial[2 n + 1, n + 1] HypergeometricPFQ[{1 - n, 1 - n, 1/2 - n/2, -(n/2)}, {1, -(1/2) - n, -n}, 1] + (n - 1) Binomial[2 n, n + 1] HypergeometricPFQ[{1 - n, 2 - n, 1/2 - n/2, 1 - n/2}, {2, 1/2 - n, -n}, 1]), {n, 10}] (* Eric W. Weisstein, May 26 2017 *) RecurrenceTable[{n(n+1)*a[n] == (n+1)*(7*n-4)*a[n-1] +8*(n-2)^2*a[n-2], a[1]==6, a[2]==30}, a, {n, 10}] (* Eric W. Weisstein, May 27 2017 *) PROG (PARI) a(n)=2*sum(k=0, n\2, binomial(n-1, k)*(binomial(n-1, k)*binomial(2*n+1-2*k, n+1)+binomial(n-1, k+1)*binomial(2*n-2*k, n+1))) (Magma) [2*(&+[Binomial(n-1, k)*(Binomial(n-1, k)*Binomial(2*n+1-2*k, n+1) + Binomial(n-1, k+1)*Binomial(2*n-2*k, n+1)): k in [0..Floor(n/2)]]): n in [1..25]]; // G. C. Greubel, Nov 24 2018 (Sage) [2*sum(binomial(n-1, k)*(binomial(n-1, k)*binomial(2*n+1-2*k, n+1) + binomial(n-1, k+1)*binomial(2*n-2*k, n+1)) for k in range(1+floor(n/2))) for n in (1..25)] # G. C. Greubel, Nov 24 2018 CROSSREFS Cf. A110707, A110710. Sequence in context: A175925 A362810 A365273 * A001341 A089896 A057754 Adjacent sequences: A110703 A110704 A110705 * A110707 A110708 A110709 KEYWORD nonn AUTHOR Max Alekseyev, Aug 04 2005 EXTENSIONS a(0)=1 prepended by Alois P. Heinz, Sep 09 2023 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 23 07:42 EDT 2024. Contains 371905 sequences. (Running on oeis4.)