login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A110708
E.g.f. log(1+arctan(x)).
8
0, 1, -1, 0, 2, 8, -64, -112, 2064, 8192, -157056, -599808, 16072704, 80010240, -2484268032, -13537247232, 506459129856, 3160676007936, -135526008225792, -929451393220608, 45507663438741504
OFFSET
0,5
LINKS
FORMULA
a(n) = n!*Sum_{m=0..(n-1)/2} (2^(2*m-n)*(n-2*m)!*(-1)^(n-m-1) * Sum_{i=0..2*m} (2^(i+n-2*m)*Stirling1(n-2*m+i,n-2*m)*binomial(n-1,n-2*m+i-1))/(n-2*m+i)!))/(n-2*m).
MATHEMATICA
With[{nn = 50}, CoefficientList[Series[Log[1 + ArcTan[x]], {x, 0, nn}], x]*Range[0, nn]!] (* G. C. Greubel, Sep 06 2017 *)
PROG
(Maxima)
a(n):=2*n!*sum((2^(-(n-2*m)-1)*(n-2*m)!*(-1)^(n-m-1)*sum((2^(i+n-2*m)*stirling1(n-2*m+i, n-2*m)*binomial(n-1, n-2*m+i-1))/(n-2*m+i)!, i, 0, 2*m))/(n-2*m), m, 0, (n-1)/2);
(Maxima) b[1]:1$ b[n]:=sum((-1)^(k+1)*b[n-1-2*k]/(2*k+1), k, 0, floor(n/2)-1)+((%i)^(n-1)+(-%i)^(n-1))/2;
cons(0, makelist((n-1)!*b[n], n, 1, 100)); /* Tani Akinari, Oct 30 2017 */
(PARI) x='x+O('x^50); concat([0], Vec(serlaplace(log(1 + atan(x))))) \\ G. C. Greubel, Sep 06 2017
CROSSREFS
Sequence in context: A153526 A153554 A139018 * A295232 A287229 A323853
KEYWORD
sign
AUTHOR
Vladimir Kruchinin, Jun 12 2011
STATUS
approved