login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

E.g.f. log(1+arctan(x)).
8

%I #20 Oct 29 2017 21:47:00

%S 0,1,-1,0,2,8,-64,-112,2064,8192,-157056,-599808,16072704,80010240,

%T -2484268032,-13537247232,506459129856,3160676007936,-135526008225792,

%U -929451393220608,45507663438741504

%N E.g.f. log(1+arctan(x)).

%H G. C. Greubel, <a href="/A110708/b110708.txt">Table of n, a(n) for n = 0..450</a>

%F a(n) = n!*Sum_{m=0..(n-1)/2} (2^(2*m-n)*(n-2*m)!*(-1)^(n-m-1) * Sum_{i=0..2*m} (2^(i+n-2*m)*Stirling1(n-2*m+i,n-2*m)*binomial(n-1,n-2*m+i-1))/(n-2*m+i)!))/(n-2*m).

%t With[{nn = 50}, CoefficientList[Series[Log[1 + ArcTan[x]], {x, 0, nn}], x]*Range[0, nn]!] (* _G. C. Greubel_, Sep 06 2017 *)

%o (Maxima)

%o a(n):=2*n!*sum((2^(-(n-2*m)-1)*(n-2*m)!*(-1)^(n-m-1)*sum((2^(i+n-2*m)*stirling1(n-2*m+i,n-2*m)*binomial(n-1,n-2*m+i-1))/(n-2*m+i)!,i,0,2*m))/(n-2*m),m,0,(n-1)/2);

%o (Maxima) b[1]:1$ b[n]:=sum((-1)^(k+1)*b[n-1-2*k]/(2*k+1),k,0,floor(n/2)-1)+((%i)^(n-1)+(-%i)^(n-1))/2;

%o cons(0,makelist((n-1)!*b[n],n,1,100)); /* _Tani Akinari_, Oct 30 2017 */

%o (PARI) x='x+O('x^50); concat([0], Vec(serlaplace(log(1 + atan(x))))) \\ _G. C. Greubel_, Sep 06 2017

%K sign

%O 0,5

%A _Vladimir Kruchinin_, Jun 12 2011