OFFSET
1,2
COMMENTS
FORMULA
a(n) = 6 * Sum_{k=0..floor(n/2)} binomial(n-1, k) * ( binomial(n-1, k)*binomial(2n-1-2k, n+1) + binomial(n-1, k+1)*binomial(2n-2k-2, n+1) ).
Conjecture: -(n+1)*(n-2)*a(n) + (7*n^2 - 13*n + 4)*a(n-1) + 8*(n-2)^2*a(n-2) = 0. - R. J. Mathar, Nov 01 2015
MAPLE
ogf := 6*((x-2)*hypergeom([1/3, 1/3], [1], 27*x^2/((8*x-1)*(x+1)^2)) + 2*hypergeom([1/3, 1/3], [2], 27*x^2/((8*x-1)*(x+1)^2))) / ((1-2* x)*(1+x)^(2/3)*(1-8*x)^(1/3));
series(ogf, x=0, 30); # Mark van Hoeij, Jan 22 2013
PROG
(PARI) a(n) = 6 * sum(k=0, n\2, binomial(n-1, k) * ( binomial(n-1, k)*binomial(2*n-1-2*k, n+1) + binomial(n-1, k+1)*binomial(2*n-2*k-2, n+1) ))
CROSSREFS
KEYWORD
nonn
AUTHOR
Max Alekseyev, Aug 04 2005
STATUS
approved