login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A055272
First differences of 7^n (A000420).
9
1, 6, 42, 294, 2058, 14406, 100842, 705894, 4941258, 34588806, 242121642, 1694851494, 11863960458, 83047723206, 581334062442, 4069338437094, 28485369059658, 199397583417606, 1395783083923242, 9770481587462694
OFFSET
0,2
COMMENTS
Partial sum of A055270.
Conjecture in "Introduction à la théorie des nombres" by J. M. Deconinck and Armel Mercier: this is the period length of the fraction 1/7^n. For example 1/7^2=0.0204081632653061224489795918367346938775510204....with a period of 42 digits =6*7=a(2). The period of 1/7^3 has exactly 294=a(3) digits. - Benoit Cloitre, Feb 02 2002
Also phi(7^n), where phi is Euler's totient function. - Alonso del Arte, May 08 2006
For n>=1, a(n) is equal to the number of functions f:{1,2...,n}->{1,2,3,4,5,6,7} such that for a fixed x in {1,2,...,n} and a fixed y in {1,2,3,4,5,6,7} we have f(x)<>y. - Aleksandar M. Janjic and Milan Janjic, Mar 27 2007
a(n) is the number of compositions of n when there are 6 types of each part. - Milan Janjic, Aug 13 2010
Apart from the first term, number of monic squarefree polynomials over F_7 of degree n. - Charles R Greathouse IV, Feb 07 2012
REFERENCES
A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
Jean-Marie De Koninck and Armel Mercier, Introduction à la théorie des nombres, Collection Universitaire de Mathématiques, Modulo, 1994.
FORMULA
G.f.: (1-x)/(1-7*x).
G.f.: 1/( 1 - 6*Sum(k>=1, x^k) ).
a(n) = 6*7^(n-1), a(0)=1.
E.g.f.: (1 + 6*exp(7*x))/7. - G. C. Greubel, Mar 16 2020
MAPLE
1, seq(6*7^(n-1), n=1..20); # G. C. Greubel, Mar 16 2020
MATHEMATICA
Table[EulerPhi[7^n], {n, 0, 19}] (* Alonso del Arte, May 08 2006 *)
PROG
(PARI) a(n)=round(7^n*6/7) \\ Charles R Greathouse IV, Feb 07 2012
(Sage) [1]+[6*7^(n-1) for n in (1..20)] # G. C. Greubel, Mar 16 2020
CROSSREFS
Sequence in context: A110711 A156361 A216517 * A155196 A147838 A127628
KEYWORD
easy,nonn
AUTHOR
Barry E. Williams, May 28 2000
STATUS
approved