login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A055274
First differences of 8^n (A001018).
9
1, 7, 56, 448, 3584, 28672, 229376, 1835008, 14680064, 117440512, 939524096, 7516192768, 60129542144, 481036337152, 3848290697216, 30786325577728, 246290604621824, 1970324836974592, 15762598695796736, 126100789566373888, 1008806316530991104
OFFSET
0,2
COMMENTS
For n>=1, a(n) is equal to the number of functions f:{1,2...,n}->{1,2,3,4,5,6,7,8} such that for a fixed x in {1,2,...,n} and a fixed y in {1,2,3,4,5,6,7,8} we have f(x)<>y. - Aleksandar M. Janjic and Milan Janjic, Mar 27 2007
a(n) is the number of compositions of n when there are 7 types of each natural number. - Milan Janjic, Aug 13 2010
For n>0, a(n) is not the sum of two nonnegative cubes. - Bruno Berselli, Mar 20 2012
REFERENCES
A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
F. Conti, R. Dvornicich, T. Franzoni and S. Mortola, Il Fibonacci N. 0 (included in Il Fibonacci, Unione Matematica Italiana, 2011), 1990, Problem 0.12.4 (see Berselli's comment).
FORMULA
G.f.: (1-x)/(1-8*x).
G.f.: 1/( 1 - 7*Sum_{k>=1} x^k ).
a(n) = 7*8^(n-1); a(0)=1.
a(n) = 8*a(n-1) + (-1)^n * C(1, 1-n).
a(n) = 7*Sum_{k=0..n-1} a(k), for n>=1. - Adi Dani, Jun 24 2011
E.g.f.: (1 + 7*exp(8*x))/8. - G. C. Greubel, Mar 16 2020
MAPLE
1, seq(7*8^(n-1), n=1..20); # G. C. Greubel, Mar 16 2020
MATHEMATICA
q = 8; Join[{a = 1}, Table[If[n == 0, a = q*a - 1, a = q*a], {n, 0, 25}]] (* Vladimir Joseph Stephan Orlovsky, Jul 11 2011 *)
PROG
(PARI) my(x='x+O('x^66)); Vec((1-x)/(1-8*x)) /* Joerg Arndt, Jun 25 2011 */
(Magma) [1] cat [7*8^(n-1): n in [1..20]]; // G. C. Greubel, Mar 16 2020
(Sage) [1]+[7*8^(n-1) for n in (1..20)] # G. C. Greubel, Mar 16 2020
CROSSREFS
Cf. A001018.
Sequence in context: A242159 A057090 A156362 * A152776 A155197 A147839
KEYWORD
nonn,easy
AUTHOR
Barry E. Williams, May 28 2000
EXTENSIONS
More terms from James A. Sellers, May 29 2000
STATUS
approved