login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A156362
a(2*n+2) = 8*a(2*n+1), a(2*n+1) = 8*a(2*n) - 7^n*A000108(n), a(0)=1.
4
1, 7, 56, 441, 3528, 28126, 225008, 1798349, 14386792, 115060722, 920485776, 7363180314, 58905442512, 471228010428, 3769824083424, 30158239367445, 241265914939560, 1930119075851050, 15440952606808400, 123527424655229966
OFFSET
0,2
COMMENTS
Hankel transform is 7^C(n+1,2).
LINKS
FORMULA
a(n) = Sum_{k=0..n} A120730(n,k) * 7^k.
a(n) = ( 8*(n+1)*a(n-1) + 28*(n-2)*a(n-2) - 224*(n-2)*a(n-3) )/(n+1). - G. C. Greubel, Nov 09 2022
MATHEMATICA
a[n_]:= a[n]= If[n==0, 1, If[OddQ[n], 8*a[n-1] -7^((n-1)/2)*CatalanNumber[(n-1)/2], 8*a[n-1]]]; Table[a[n], {n, 0, 30}] (* G. C. Greubel, Nov 09 2022 *)
PROG
(Magma) [n le 3 select Factorial(n+5)/720 else (8*n*Self(n-1) + 28*(n-3)*Self(n-2) - 224*(n-3)*Self(n-3))/n: n in [1..30]]; // G. C. Greubel, Nov 09 2022
(SageMath)
def a(n): # a = A156362
if (n==0): return 1
elif (n%2==1): return 8*a(n-1) - 7^((n-1)/2)*catalan_number((n-1)/2)
else: return 8*a(n-1)
[a(n) for n in (0..30)] # G. C. Greubel, Nov 09 2022
KEYWORD
nonn
AUTHOR
Philippe Deléham, Feb 08 2009
STATUS
approved