OFFSET
0,2
FORMULA
a(n) = (1/n)*Sum_{k=1..n} sigma(2*k,k)*a(n-k) for n>0, with a(0) = 1.
a(n) ~ 2^n * n^(n-1). - Vaclav Kotesovec, Oct 31 2024
EXAMPLE
G.f.: A(x) = 1 + 3*x + 15*x^2 + 120*x^3 + 1450*x^4 + 25383*x^5 +...
log(A(x)) = 3*x + 21*x^2/2 + 252*x^3/3 + 4369*x^4/4 + 103158*x^5/5 +...
sigma(2n,n) = [3,21,252,4369,103158,3037530,106237176,4311810305,...].
PROG
(PARI) {a(n)=polcoeff(exp(sum(k=1, n, sigma(2*k, k)*x^k/k, x*O(x^n))), n)}
(PARI) {a(n)=if(n==0, 1, (1/n)*sum(k=1, n, sigma(2*k, k)*a(n-k)))}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 08 2009
STATUS
approved