login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A156360
G.f.: A(x) = exp( Sum_{n>=1} sigma_n(2n)*x^n/n ), where sigma_n(2n) is the sum of the n-th powers of the divisors of 2*n.
1
1, 3, 15, 120, 1450, 25383, 591563, 17156364, 595635903, 24023004840, 1102221504614, 56652798990909, 3222918574782830, 200989079661549750, 13632214370613131094, 998992560620311541814, 78653794343072884416393
OFFSET
0,2
FORMULA
a(n) = (1/n)*Sum_{k=1..n} sigma(2*k,k)*a(n-k) for n>0, with a(0) = 1.
a(n) ~ 2^n * n^(n-1). - Vaclav Kotesovec, Oct 31 2024
EXAMPLE
G.f.: A(x) = 1 + 3*x + 15*x^2 + 120*x^3 + 1450*x^4 + 25383*x^5 +...
log(A(x)) = 3*x + 21*x^2/2 + 252*x^3/3 + 4369*x^4/4 + 103158*x^5/5 +...
sigma(2n,n) = [3,21,252,4369,103158,3037530,106237176,4311810305,...].
PROG
(PARI) {a(n)=polcoeff(exp(sum(k=1, n, sigma(2*k, k)*x^k/k, x*O(x^n))), n)}
(PARI) {a(n)=if(n==0, 1, (1/n)*sum(k=1, n, sigma(2*k, k)*a(n-k)))}
CROSSREFS
Cf. variant: A023881 (number of partitions in expanding space).
Cf. A179504.
Sequence in context: A093571 A093570 A107869 * A377105 A160884 A173468
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 08 2009
STATUS
approved