login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A023881
Number of partitions in expanding space: sigma(n,q) is the sum of the q-th powers of the divisors of n.
17
1, 1, 3, 12, 82, 725, 8811, 128340, 2257687, 45658174, 1052672116, 27108596725, 772945749970, 24137251258926, 819742344728692, 30069017799172228, 1184889562926838573, 49914141857616862435
OFFSET
0,3
LINKS
FORMULA
G.f.: exp( Sum_{k>0} sigma_k(k) * x^k / k). - Michael Somos, Feb 15 2006
G.f.: Product_{n>=1} (1 - n^n*x^n)^(-1/n). - Paul D. Hanna, Mar 08 2011
a(n) ~ n^(n-1). - Vaclav Kotesovec, Oct 08 2016
EXAMPLE
G.f. = 1 + x + 3*x^2 + 12*x^3 + 82*x^4 + 725*x^5 + 8811*x^6 + 128340*x^7 + 2257687*x^8 + ...
MAPLE
seq(coeff(series(mul((1-k^k*x^k)^(-1/k), k=1..n), x, n+1), x, n), n = 0 .. 20); # Muniru A Asiru, Oct 31 2018
MATHEMATICA
nmax=30; CoefficientList[Series[Product[1/(1-k^k*x^k)^(1/k), {k, 1, nmax}], {x, 0, nmax}], x] (* G. C. Greubel, Oct 31 2018 *)
PROG
(PARI) {a(n) = if( n<0, 0, polcoeff( exp( sum( k=1, n, sigma(k, k) * x^k / k, x * O(x^n))), n))} /* Michael Somos, Feb 15 2006 */
(PARI) {a(n)=if(n<0, 0, polcoeff(prod(k=1, n, (1-k^k*x^k+x*O(x^n))^(-1/k)), n))} /* Paul D. Hanna */
(Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); Coefficients(R! ( (&*[1/(1-k^k*x^k)^(1/k): k in [1..m]]) )); // G. C. Greubel, Oct 30 2018
CROSSREFS
KEYWORD
nonn
STATUS
approved