login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A023881 Number of partitions in expanding space: sigma(n,q) is the sum of the q-th powers of the divisors of n. 16
1, 1, 3, 12, 82, 725, 8811, 128340, 2257687, 45658174, 1052672116, 27108596725, 772945749970, 24137251258926, 819742344728692, 30069017799172228, 1184889562926838573, 49914141857616862435 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Vaclav Kotesovec, Table of n, a(n) for n = 0..370

FORMULA

G.f.: exp( Sum_{k>0} sigma_k(k) * x^k / k). - Michael Somos, Feb 15 2006

G.f.: Product_{n>=1} (1 - n^n*x^n)^(-1/n). - Paul D. Hanna, Mar 08 2011

a(n) ~ n^(n-1). - Vaclav Kotesovec, Oct 08 2016

EXAMPLE

G.f. = 1 + x + 3*x^2 + 12*x^3 + 82*x^4 + 725*x^5 + 8811*x^6 + 128340*x^7 + 2257687*x^8 + ...

MAPLE

seq(coeff(series(mul((1-k^k*x^k)^(-1/k), k=1..n), x, n+1), x, n), n = 0 .. 20); # Muniru A Asiru, Oct 31 2018

MATHEMATICA

nmax=30; CoefficientList[Series[Product[1/(1-k^k*x^k)^(1/k), {k, 1, nmax}], {x, 0, nmax}], x] (* G. C. Greubel, Oct 31 2018 *)

PROG

(PARI) {a(n) = if( n<0, 0, polcoeff( exp( sum( k=1, n, sigma(k, k) * x^k / k, x * O(x^n))), n))} /* Michael Somos, Feb 15 2006 */

(PARI) {a(n)=if(n<0, 0, polcoeff(prod(k=1, n, (1-k^k*x^k+x*O(x^n))^(-1/k)), n))} /* Paul D. Hanna */

(MAGMA) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); Coefficients(R! ( (&*[1/(1-k^k*x^k)^(1/k): k in [1..m]]) )); // G. C. Greubel, Oct 30 2018

CROSSREFS

Cf. A023882, A023887, A158952.

Sequence in context: A207322 A188227 A224608 * A067111 A171186 A229421

Adjacent sequences:  A023878 A023879 A023880 * A023882 A023883 A023884

KEYWORD

nonn

AUTHOR

Olivier Gérard

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 24 18:08 EDT 2021. Contains 348233 sequences. (Running on oeis4.)