login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A023879
Number of partitions in expanding space.
6
1, 1, 3, 12, 79, 722, 8675, 128177, 2248873, 45644104, 1051632553, 27107038863, 772751427746, 24136897360750, 819689757351091, 30068876227952332, 1184869328943005936, 49914047187427191742
OFFSET
0,3
LINKS
FORMULA
G.f.: Product_{k>=1} (1 - x^k)^(-k^(k-1)).
G.f.: exp( Sum_{n>=1} A062796(n)/n*x^n ), where A062796(n) = Sum_{d|n} d^d. - Paul D. Hanna, Sep 05 2012
a(n) ~ n^(n-1). - Vaclav Kotesovec, Mar 14 2015
MAPLE
seq(coeff(series(mul((1-x^k)^(-k^(k-1)), k=1..n), x, n+1), x, n), n = 0 .. 20); # Muniru A Asiru, Oct 31 2018
MATHEMATICA
nmax=20; CoefficientList[Series[Product[1/(1-x^k)^(k^(k-1)), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 14 2015 *)
PROG
(PARI) {a(n)=polcoeff(prod(k=1, n, (1-x^k+x*O(x^n))^(-k^(k-1))), n)}
(PARI) {a(n)=polcoeff(exp(sum(m=1, n+1, sumdiv(m, d, d^d)*x^m/m) +x*O(x^n)), n)} \\ Paul D. Hanna, Sep 05 2012
(Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); Coefficients(R! ( (&*[1/(1-x^k)^(k^(k-1)): k in [1..m]]) )); // G. C. Greubel, Oct 31 2018
CROSSREFS
Cf. A062796.
Sequence in context: A058561 A058107 A213139 * A084565 A323634 A373395
KEYWORD
nonn
STATUS
approved