OFFSET
0,3
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..380
FORMULA
G.f.: Product_{k>=1} (1 - x^k)^(-k^(k-1)).
G.f.: exp( Sum_{n>=1} A062796(n)/n*x^n ), where A062796(n) = Sum_{d|n} d^d. - Paul D. Hanna, Sep 05 2012
a(n) ~ n^(n-1). - Vaclav Kotesovec, Mar 14 2015
MAPLE
seq(coeff(series(mul((1-x^k)^(-k^(k-1)), k=1..n), x, n+1), x, n), n = 0 .. 20); # Muniru A Asiru, Oct 31 2018
MATHEMATICA
nmax=20; CoefficientList[Series[Product[1/(1-x^k)^(k^(k-1)), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 14 2015 *)
PROG
(PARI) {a(n)=polcoeff(prod(k=1, n, (1-x^k+x*O(x^n))^(-k^(k-1))), n)}
(PARI) {a(n)=polcoeff(exp(sum(m=1, n+1, sumdiv(m, d, d^d)*x^m/m) +x*O(x^n)), n)} \\ Paul D. Hanna, Sep 05 2012
(Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); Coefficients(R! ( (&*[1/(1-x^k)^(k^(k-1)): k in [1..m]]) )); // G. C. Greubel, Oct 31 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved