login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A062796
Inverse Moebius transform of f(n) = n^n (A000312).
32
1, 5, 28, 261, 3126, 46688, 823544, 16777477, 387420517, 10000003130, 285311670612, 8916100495200, 302875106592254, 11112006826381564, 437893890380862528, 18446744073726329093, 827240261886336764178, 39346408075296925042601, 1978419655660313589123980
OFFSET
1,2
LINKS
Seiichi Manyama, Table of n, a(n) for n = 1..386 (first 200 terms from Nick Hobson)
FORMULA
a(n) = Sum_{d|n} d^d.
G.f.: Sum_{n>=1} n^n * x^n/(1 - x^n). - Paul D. Hanna, Oct 27 2009
Logarithmic derivative of A023879. - Paul D. Hanna, Sep 05 2012
EXAMPLE
n=6: divisors = {1,2,3,6}; 1^1 + 2^2 + 3^3 + 6^6 = 1 + 4 + 27 + 46656 = 46688 = a(6).
MATHEMATICA
a[n_] := DivisorSum[n, #^# &]; Array[a, 19] (* Jean-François Alcover, Dec 23 2015 *)
PROG
(PARI) vector(17, n, sumdiv(n, d, d^d))
(PARI) {a(n)=polcoeff(sum(m=1, n, m^m*x^m/(1-x^m +x*O(x^n))), n)} \\ Paul D. Hanna, Oct 27 2009
(PARI) a(n) = sumdiv(n, d, d^d ); \\ Joerg Arndt, Apr 14 2013
(Python)
from sympy import divisors
def A062796(n): return sum(d**d for d in divisors(n, generator=True)) # Chai Wah Wu, Jun 19 2022
CROSSREFS
Sequence in context: A362636 A238981 A163694 * A347399 A353009 A343573
KEYWORD
nonn
AUTHOR
Labos Elemer, Jul 19 2001
STATUS
approved