The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A062796 Inverse Moebius transform of f(n) = n^n (A000312). 27
 1, 5, 28, 261, 3126, 46688, 823544, 16777477, 387420517, 10000003130, 285311670612, 8916100495200, 302875106592254, 11112006826381564, 437893890380862528, 18446744073726329093, 827240261886336764178, 39346408075296925042601, 1978419655660313589123980 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Seiichi Manyama, Table of n, a(n) for n = 1..386 (first 200 terms from Nick Hobson) FORMULA a(n) = Sum_{d|n} d^d. G.f.: Sum_{n>=1} n^n * x^n/(1 - x^n). - Paul D. Hanna, Oct 27 2009 Logarithmic derivative of A023879. - Paul D. Hanna, Sep 05 2012 EXAMPLE n=6: divisors = {1,2,3,6}; 1^1 + 2^2 + 3^3 + 6^6 = 1 + 4 + 27 + 46656 = 46688 = a(6). MATHEMATICA a[n_] := DivisorSum[n, #^# &]; Array[a, 19] (* Jean-François Alcover, Dec 23 2015 *) PROG (PARI) vector(17, n, sumdiv(n, d, d^d)) (PARI) {a(n)=polcoeff(sum(m=1, n, m^m*x^m/(1-x^m +x*O(x^n))), n)} \\ Paul D. Hanna, Oct 27 2009 (PARI) a(n) = sumdiv(n, d, d^d ); \\ Joerg Arndt, Apr 14 2013 (Python) from sympy import divisors def A062796(n): return sum(d**d for d in divisors(n, generator=True)) # Chai Wah Wu, Jun 19 2022 CROSSREFS Cf. A000312, A023879. Sequence in context: A116977 A238981 A163694 * A347399 A353009 A343573 Adjacent sequences:  A062793 A062794 A062795 * A062797 A062798 A062799 KEYWORD nonn AUTHOR Labos Elemer, Jul 19 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 6 23:53 EDT 2022. Contains 355115 sequences. (Running on oeis4.)