login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A062799
Inverse Möbius transform of the numbers of distinct prime factors (A001221).
25
0, 1, 1, 2, 1, 4, 1, 3, 2, 4, 1, 7, 1, 4, 4, 4, 1, 7, 1, 7, 4, 4, 1, 10, 2, 4, 3, 7, 1, 12, 1, 5, 4, 4, 4, 12, 1, 4, 4, 10, 1, 12, 1, 7, 7, 4, 1, 13, 2, 7, 4, 7, 1, 10, 4, 10, 4, 4, 1, 20, 1, 4, 7, 6, 4, 12, 1, 7, 4, 12, 1, 17, 1, 4, 7, 7, 4, 12, 1, 13, 4, 4
OFFSET
1,4
COMMENTS
Let us say that two divisors d_1 and d_2 of n are adjacent divisors if d_1/d_2 or d_2/d_1 is a prime. Then a(n) is the number of all pairs of adjacent divisors of n. - Vladimir Shevelev, Aug 16 2010
Equivalent to the preceding comment: a(n) is the number of edges in the directed multigraph on tau(n) vertices, vertices labeled by the divisors d_i of n, where edges connect vertex(d_i) and vertex(d_j) if the ratio of the labels is a prime. - R. J. Mathar, Sep 23 2011
a(A001248(n)) = 2. - Reinhard Zumkeller, Dec 02 2014
Depends on the prime signature of n as follows: a(A025487(n)) = 0, 1, 2, 4, 3, 7, 4, 10, 12, 5, 12, 13, 20, 6, 17, 16, 28, 7, 22, 33, 19 ,32, 24, 36, 8, 27, 46, ... (n>=1). - R. J. Mathar, May 28 2017
LINKS
S.-H. Cha, E. G. DuCasse, and L. V. Quintas, Graph Invariants Based on the Divides Relation and Ordered by Prime Signatures, arXiv:1405.5283 [math.NT], 2014.
E. Pérez Herrero, Psychedelic Geometry Blogspot, CURIOUS SERIES-002
FORMULA
a(n) = Sum_{d|n} A001221(d), that is, where d runs over divisors of n.
For squarefree s (i.e., s in A005117), a(s) = omega(s)*2^(omega(s)-1), where omega(n) = A001221(n). Also, for n>1, a(n) <= omega(n)*A000005(n) - 1. - Enrique Pérez Herrero, Sep 08 2009
Let n=Product_{i=1..omega(n)} p(i)^e(i). a(n) = d[Product_{i=1..omega(n)} (1 + e(i)*x)]/dx|x=1. In other words, a(n) = Sum_{m>=1} A146289(n,m)*m. - Geoffrey Critzer, Feb 10 2015
a(A000040(n)) = 1; a(A001248(n)) = 2; a(A030078(n)) = 3; a(A030514(n)) = 4; a(A050997(n)) = 5. - Altug Alkan, Oct 17 2015
a(n) = Sum_{prime p|n} A000005(n/p). - Max Alekseyev, Aug 11 2016
G.f.: Sum_{k>=1} omega(k)*x^k/(1 - x^k), where omega(k) is the number of distinct primes dividing k (A001221). - Ilya Gutkovskiy, Jan 16 2017
Dirichlet g.f.: zeta(s)^2*primezeta(s) where primezeta(s) = Sum_{prime p} p^(-s). - Benedict W. J. Irwin, Jul 16 2018
EXAMPLE
n = 255: divisors = {1, 3, 5, 15, 17, 51, 85, 255}, a(255) = 0+1+1+2+1+2+2+3 = 12.
MAPLE
read("transforms") ;
A001221 := proc(n)
nops(numtheory[factorset](n)) ;
end proc:
omega := [seq(A001221(n), n=1..80)] ;
ones := [seq(1, n=1..80)] ;
DIRICHLET(ones, omega) ; # R. J. Mathar, Sep 23 2011
N:= 1000: # to get a(1) to a(N)
B:= Vector(N, t-> nops(numtheory:-factorset(t))):
A:= Vector(N):
for d from 1 to N do
md:= d*[$1..floor(N/d)];
A[md]:= map(`+`, A[md], B[d])
od:
convert(A, list); # Robert Israel, Oct 21 2015
MATHEMATICA
f[n_] := Block[{d = Divisors[n], c = l = 0, k = 2}, l = Length[d]; While[k < l + 1, c = c + Length[ FactorInteger[ d[[k]] ]]; k++ ]; Return[c]]; Table[f[n], {n, 1, 100} ]
omega[n_] := Length[FactorInteger[n]]; SetAttributes[omega, Listable]; omega[1] := 0; A062799[n_] := Plus @@ omega[Divisors[n]] (* Enrique Pérez Herrero, Sep 08 2009 *)
PROG
(Haskell)
a062799 = sum . map a001221 . a027750_row
-- Reinhard Zumkeller, Dec 02 2014
(PARI) a(n)=my(f=factor(n)[, 2], s); forvec(v=vector(#f, i, [0, f[i]]), s+=sum(i=1, #f, v[i]>0)); s \\ Charles R Greathouse IV, Oct 15 2015
(PARI) vector(100, n, sumdiv(n, k, omega(k))) \\ Altug Alkan, Oct 15 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Jul 19 2001
STATUS
approved