OFFSET
1,4
COMMENTS
Also number of ways to write 1/n as sum of exactly two distinct unit fractions. - Thomas L. York, Jan 11 2014
Also number of positive integers m such that 1/n + 1/m is a unit fraction. - Jon E. Schoenfield, Apr 17 2018
If 1/n = 1/b - 1/c then n = bc/(c-b) and 1/n = 1/(2n-b) + 1/(c+2n) (though it is also the case that 1/n = 1/(2n) + 1/(2n) equivalent to b = c = 0).
Also number of divisors of n^2 less than n. - Vladeta Jovovic, Aug 13 2001
Number of elements in the set {(x,y): x|n, y|n, x<y, gcd(x,y)=1}. - Vladeta Jovovic, May 03 2002
Also number of positive integers of the form k*n/(k+n). - Benoit Cloitre, Jan 04 2002
This is similar to A062799, having the same first 29 terms. But they are different sequences.
If A001221(n) = omega(n) <= 2, then a(n) = A062799(n); if A001221(n) > 2, then a(n) > A062799(n). - Matthew Vandermast, Aug 25 2004
Number of r X s integer-sided rectangles such that r + s = 4n, r < s and (s - r) | (s * r). - Wesley Ivan Hurt, Apr 24 2020
Also number of integer-sided right triangles with 2n as a leg. Equivalent to the even indices of A046079. - Nathaniel C Beckman, May 14 2020; Jun 26 2020
LINKS
T. D. Noe, Table of n, a(n) for n = 1..10000
Christopher J. Bradley, Solution to Problem 2175, Crux Mathematicorum, Vol. 23, No. 7, (Nov 1997), pp. 443-444.
Umberto Cerruti, Percorsi tra i numeri (in Italian), pages 3-4.
Roger B. Eggleton, Unitary Fractions: 10501, The American Mathematical Monthly, Vol. 105, No. 4 (Apr., 1998), p. 372.
Amiram Eldar, Plot of (Sum_{i=1..n} a(i))/f(n) - 1, where f(n) is an asymptotic function, for n = 2^(1..28).
Amarnath Murthy, Decomposition of the divisors of a natural number into pairwise coprime sets, Smarandache Notions Journal, Vol. 12, No. 1-2-3, Spring 2001, pp. 303-306.
FORMULA
a(n) = (tau(n^2)-1)/2.
a(n) = A018892(n)-1. If n = (p1^a1)(p2^a2)...(pt^at), a(n) = ((2*a1+1)(2*a2+1)...(2*at+1)-1)/2.
If n is prime a(n)=1. Conjecture: (1/n)*Sum_{i=1..n} a(i) = C*log(n)*log(log(n)) + o(log(n)) with C=0.7... [The conjecture is false. See the plot and the asymptotic formula below. - Amiram Eldar, Oct 03 2024]
Bisection of A046079. - Lekraj Beedassy, Jul 09 2004
a(n) = Sum_{i=1..2*n-1} (1 - ceiling(i*(4*n-i)/(4*n-2*i)) + floor(i*(4*n-i)/(4*n-2*i))). - Wesley Ivan Hurt, Apr 24 2020
Sum_{k=1..n} a(k) ~ (n/(2*zeta(2)))*(log(n)^2/2 + log(n)*(3*gamma - 1) + 1 - 3*gamma + 3*gamma^2 - 3*gamma_1 - zeta(2) + (2 - 6*gamma - 2*log(n))*zeta'(2)/zeta(2) + (2*zeta'(2)/zeta(2))^2 - 2*zeta''(2)/zeta(2)), where gamma is Euler's constant (A001620) and gamma_1 is the first Stieltjes constant (A082633). - Amiram Eldar, Oct 03 2024
EXAMPLE
a(10) = 4 since 1/10 = 1/5 - 1/10 = 1/6 - 1/15 = 1/8 - 1/40 = 1/9 - 1/90.
a(12) = 7: the divisors of 12 are 1, 2, 3, 4, 6 and 12 and the decompositions are (1, 2), (1, 3), (1, 4), (1, 6), (1, 12), (2, 3), (3, 4).
MATHEMATICA
Table[(Length[Divisors[n^2]] - 1)/2, {n, 1, 100}]
(DivisorSigma[0, Range[100]^2]-1)/2 (* Harvey P. Dale, Apr 15 2013 *)
PROG
(PARI) for(n=1, 100, print1(sum(i=1, n^2, if((n*i)%(i+n), 0, 1)), ", "))
(PARI) a(n)=numdiv(n^2)\2 \\ Charles R Greathouse IV, Oct 03 2016
(Magma) [(NumberOfDivisors(n^2)-1)/2 : n in [1..100]]; // Vincenzo Librandi, Apr 18 2018
CROSSREFS
First twenty-nine terms identical to those of A062799.
KEYWORD
nonn,easy,nice
AUTHOR
Henry Bottomley, Jul 23 2001
STATUS
approved