login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A063644
Primes with 2 representations: p*q*r - 1 = u*v*w + 1 where p, q, r, u, v and w are primes.
4
19, 29, 43, 67, 173, 283, 317, 653, 787, 907, 1867, 2083, 2693, 2803, 3413, 3643, 3677, 4253, 4363, 4723, 5443, 5717, 6197, 6547, 6653, 8563, 8573, 9067, 9187, 9403, 9643, 10733, 11443, 11587, 12163, 12917, 13997, 14107, 14683, 15187, 17827
OFFSET
1,1
COMMENTS
Also, primes sandwiched by 3-almost primes. Primes p such that p-+1 are 3-almost primes (A014612). - Zak Seidov, Jul 06 2015
LINKS
Robert G. Wilson v, Table of n, a(n) for n = 1..10000 (first 1000 terms from Harry J. Smith)
EXAMPLE
4723 is a term because 4723 = A063639(168)= 4724 - 1 = 2*2*1181 - 1, and because 4723 = A063640(158)= 4722 + 1 = 2*3*787 + 1.
MATHEMATICA
Select[Prime[Range[3000]], 3 == PrimeOmega[# - 1] == PrimeOmega[# + 1] &] (* Vincenzo Librandi, Jul 07 2015 *)
PROG
(PARI) n=0; default(primelimit, 2000000); for (m=2, 10^9, p=prime(m); if (bigomega(p + 1) == 3 && bigomega(p - 1) == 3, write("b063644.txt", n++, " ", p); if (n==1000, break)) ) \\ Harry J. Smith, Aug 27 2009
(PARI) list(lim)=my(v=List(), u=v, L=(lim+1)\2, t); forprime(p=2, L\2, forprime(q=2, min(p, L\p), listput(u, p*q))); u=Set(u); for(i=2, #u, if(u[i]-u[i-1]==1 && isprime(t=2*u[i]-1), listput(v, t))); Vec(v) \\ Charles R Greathouse IV, Jan 31 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Jul 21 2001
STATUS
approved