login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A156782 Primes : if sums of prime number and 4 consecutive prime numbers on-left-and-on-right are also primes. 5
19, 29, 43, 73, 137, 149, 157, 179, 211, 379, 383, 401, 409, 433, 467, 557, 569, 577, 599, 677, 839, 863, 883, 919, 997, 1103, 1303, 1499, 1553, 1637, 1669, 1709, 1783, 1811, 1861, 1873, 1951, 2113, 2207, 2309, 2393, 2503, 2647, 2663, 2713, 2791, 3011 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

7+11+13+17+19=67(prime);19+23+29+31+37=139(prime),... prime(n)+prime(n-1)+prime(n-2)+prime(n-3)+prime(n-4) are primes and prime(n)+prime(n+1)+prime(n+2)+prime(n+3)+prime(n+4) are also primes.

LINKS

Harvey P. Dale, Table of n, a(n) for n = 1..1000

MATHEMATICA

lst={}; Do[p0=Prime[n+0]; p1=Prime[n+1]; p2=Prime[n+2]; p3=Prime[n+3]; p4=Prime[n+4]; p5=Prime[n+5]; p6=Prime[n+6]; p7=Prime[n+7]; p8=Prime[n+8]; If[PrimeQ[p0+p1+p2+p3+p4]&&PrimeQ[p4+p5+p6+p7+p8], AppendTo[lst, p4]], {n, 7!}]; lst

Transpose[Select[Partition[Prime[Range[500]], 9, 1], And@@PrimeQ[{Total[ Take[#, 5]], Total[Take[#, -5]]}]&]][[5]] (* Harvey P. Dale, Jul 11 2013 *)

CROSSREFS

Cf. A156781

Sequence in context: A100590 A046120 A063644 * A347366 A092600 A106124

Adjacent sequences:  A156779 A156780 A156781 * A156783 A156784 A156785

KEYWORD

nonn

AUTHOR

Vladimir Joseph Stephan Orlovsky, Feb 15 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 5 23:38 EST 2021. Contains 349558 sequences. (Running on oeis4.)