login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A379161
Primes p such that the multiplicative order of 7 modulo p is prime.
1
19, 29, 47, 59, 83, 167, 223, 227, 311, 367, 383, 389, 419, 439, 467, 479, 503, 563, 587, 607, 653, 719, 809, 839, 887, 971, 983, 1123, 1307, 1319, 1447, 1487, 1543, 1733, 1811, 1823, 1907, 1997, 2063, 2099, 2153, 2239, 2383, 2579, 2741, 2801, 2819, 2837, 2887, 2903, 2909, 2999, 3023, 3083, 3167, 3463, 3547
OFFSET
1,1
COMMENTS
Odd primes that divide 7^p-1 for some prime p [after Robert Israel].
LINKS
MAPLE
filter:= n -> isprime(n) and isprime(numtheory:-order(7, n)):
select(filter, [2, 3, 5, seq(i, i=11..10000, 2)]); # Robert Israel, Jan 03 2025
MATHEMATICA
Select[Prime@Range@4000, PrimeQ@MultiplicativeOrder[7, #]&]
PROG
(Magma) [p: p in PrimesInInterval(2, 4000) | IsPrime(Modorder(7, p))];
CROSSREFS
KEYWORD
nonn
AUTHOR
Vincenzo Librandi, Dec 17 2024
STATUS
approved