login
A277049
Primes p such that the multiplicative order of 5 modulo p is prime.
1
3, 11, 31, 59, 71, 149, 179, 191, 269, 359, 389, 409, 479, 569, 719, 839, 1019, 1039, 1091, 1319, 1439, 1609, 1619, 1699, 1759, 1861, 1949, 2039, 2099, 2239, 2309, 2459, 2579, 2621, 2749, 2819, 2879, 2909, 2939, 2999, 3119, 3229, 3449, 3461, 3581, 3709
OFFSET
1,1
COMMENTS
Odd primes that divide 5^p-1 for some prime p. - Robert Israel, Nov 13 2016
LINKS
MAPLE
select(p -> isprime(p) and isprime(numtheory:-order(5, p)), [3, seq(p, p=7..10000, 2)]); # Robert Israel, Nov 13 2016
MATHEMATICA
Select[Prime@Range@600, PrimeQ@MultiplicativeOrder[5, #] &]
PROG
(Magma) [p: p in PrimesInInterval(2, 4000) | IsPrime(Modorder(5, p))];
(PARI) is(n) = n!=5 && ispseudoprime(n) && ispseudoprime(znorder(Mod(5, n))) \\ Felix Fröhlich, Nov 01 2016
CROSSREFS
Sequence in context: A266970 A057172 A277167 * A261148 A071568 A097081
KEYWORD
nonn
AUTHOR
Vincenzo Librandi, Oct 28 2016
STATUS
approved