The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A122094 Prime divisors of Mersenne numbers. Primes p such that the multiplicative order of 2 modulo p is prime. 12
 3, 7, 23, 31, 47, 89, 127, 167, 223, 233, 263, 359, 383, 431, 439, 479, 503, 719, 839, 863, 887, 983, 1103, 1319, 1367, 1399, 1433, 1439, 1487, 1823, 1913, 2039, 2063, 2089, 2207, 2351, 2383, 2447, 2687, 2767, 2879, 2903, 2999, 3023, 3119, 3167, 3343 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Except for the first term (3), all terms are 1 or 7 (mod 8). - William Hu, May 03 2024 LINKS Charles R Greathouse IV, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe) FORMULA p is a prime divisor of a Mersenne number 2^q - 1 iff prime q is the multiplicative order of 2 modulo p. MATHEMATICA Reap[For[p=2, p<10^5, p=NextPrime[p], If[PrimeQ[MultiplicativeOrder[2, p]], Sow[p]]]][[2, 1]] (* Jean-François Alcover, Dec 10 2015 *) Select[Prime@ Range@ 500, PrimeQ@ MultiplicativeOrder[2, #] &] (* Michael De Vlieger, Oct 28 2016 *) PROG (PARI) forprime(p=3, 10^5, if(isprime(znorder(Mod(2, p))), print1(p, ", "))) (Magma) [p: p in PrimesInInterval(2, 4000) | IsPrime(Modorder(2, p))]; // Vincenzo Librandi, Oct 28 2016 CROSSREFS Cf. A001348, A016047, A003260, A000668, A137332. Cf. A089162 (this list sorted by q). Sequence in context: A271918 A165580 A187222 * A260350 A270384 A213897 Adjacent sequences: A122091 A122092 A122093 * A122095 A122096 A122097 KEYWORD nonn AUTHOR Max Alekseyev, Oct 25 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 29 11:28 EDT 2024. Contains 372940 sequences. (Running on oeis4.)