login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A122094
Prime divisors of Mersenne numbers. Primes p such that the multiplicative order of 2 modulo p is prime.
12
3, 7, 23, 31, 47, 89, 127, 167, 223, 233, 263, 359, 383, 431, 439, 479, 503, 719, 839, 863, 887, 983, 1103, 1319, 1367, 1399, 1433, 1439, 1487, 1823, 1913, 2039, 2063, 2089, 2207, 2351, 2383, 2447, 2687, 2767, 2879, 2903, 2999, 3023, 3119, 3167, 3343
OFFSET
1,1
COMMENTS
Except for the first term (3), all terms are 1 or 7 (mod 8). - William Hu, May 03 2024
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
FORMULA
p is a prime divisor of a Mersenne number 2^q - 1 iff prime q is the multiplicative order of 2 modulo p.
MATHEMATICA
Reap[For[p=2, p<10^5, p=NextPrime[p], If[PrimeQ[MultiplicativeOrder[2, p]], Sow[p]]]][[2, 1]] (* Jean-François Alcover, Dec 10 2015 *)
Select[Prime@ Range@ 500, PrimeQ@ MultiplicativeOrder[2, #] &] (* Michael De Vlieger, Oct 28 2016 *)
PROG
(PARI) forprime(p=3, 10^5, if(isprime(znorder(Mod(2, p))), print1(p, ", ")))
(Magma) [p: p in PrimesInInterval(2, 4000) | IsPrime(Modorder(2, p))]; // Vincenzo Librandi, Oct 28 2016
CROSSREFS
Cf. A089162 (this list sorted by q).
Sequence in context: A271918 A165580 A187222 * A260350 A270384 A213897
KEYWORD
nonn
AUTHOR
Max Alekseyev, Oct 25 2006
STATUS
approved