OFFSET
1,1
COMMENTS
This is to 4-almost primes as A122032 is to 3-almost primes and as A122019 is to 2-almost primes (semiprimes). Note that these can nonmonotonic (look at the graphs). What is the asymptotic value of the ratio A114426(n)/A002110(n)?
Probably it can be easily proved that a(n) = 0 for n >= 802. - Giovanni Resta, Jun 13 2016
LINKS
Giovanni Resta, Table of n, a(n) for n = 1..1000
FORMULA
EXAMPLE
a(1) = floor(16/2) = floor(8) = 8.
a(2) = floor((16*24)/(2*3)) = floor(384/6) = floor(64) = 64.
a(3) = floor(13824/30) = floor(460.8) = 460.
a(4) = floor(552960/210) = floor(2633.14286) = 2633.
MATHEMATICA
q = Select[Range[1000], PrimeOmega[#] == 4 &]; m = 1; Table[ Floor[ m *= q[[i]]/ Prime[i]], {i, Length@ q}] (* Giovanni Resta, Jun 13 2016 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Oct 17 2006
EXTENSIONS
a(11)-a(25) from Giovanni Resta, Jun 13 2016
STATUS
approved