login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A122093
Product of the first n 4-almost primes, divided by product of the first n primes, rounded down.
2
8, 64, 460, 2633, 12926, 55682, 196527, 837826, 3059886, 9285173, 26956956, 72856639, 184807084, 541527736, 1520886410, 3873955950, 8929796766, 20494615529, 45883467602, 98229395430, 209914872426, 488915652233, 1113313955086, 2451792530303, 5004689907217
OFFSET
1,1
COMMENTS
This is to 4-almost primes as A122032 is to 3-almost primes and as A122019 is to 2-almost primes (semiprimes). Note that these can nonmonotonic (look at the graphs). What is the asymptotic value of the ratio A114426(n)/A002110(n)?
Probably it can be easily proved that a(n) = 0 for n >= 802. - Giovanni Resta, Jun 13 2016
LINKS
FORMULA
a(n) = floor(A114426(n)/A002110(n)) = floor(Prod(i=1..n)4almostprime(i)/Prod(i=1..n)prime(i)) = floor(Prod(i=1..n)A014613(i)/Prod(i=1..n)A000040(i)) = floor(Prod(i=1..n)(A014613(i)/A000040(i))).
EXAMPLE
a(1) = floor(16/2) = floor(8) = 8.
a(2) = floor((16*24)/(2*3)) = floor(384/6) = floor(64) = 64.
a(3) = floor(13824/30) = floor(460.8) = 460.
a(4) = floor(552960/210) = floor(2633.14286) = 2633.
MATHEMATICA
q = Select[Range[1000], PrimeOmega[#] == 4 &]; m = 1; Table[ Floor[ m *= q[[i]]/ Prime[i]], {i, Length@ q}] (* Giovanni Resta, Jun 13 2016 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Oct 17 2006
EXTENSIONS
a(11)-a(25) from Giovanni Resta, Jun 13 2016
STATUS
approved