login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A267470
Number of length-n 0..7 arrays with no following elements larger than the first repeated value.
1
8, 64, 484, 3592, 26440, 193852, 1418740, 10378144, 75944464, 556295860, 4080955516, 29994246136, 220942982968, 1631599880428, 12082194095812, 89736369169168, 668588308469152, 4997804102441956, 37486765952804428
OFFSET
1,1
COMMENTS
Column 7 of A267471.
LINKS
FORMULA
Empirical: a(n) = 43*a(n-1) -798*a(n-2) +8358*a(n-3) -54201*a(n-4) +224427*a(n-5) -589112*a(n-6) +936452*a(n-7) -807408*a(n-8) +282240*a(n-9).
Conjectures from Colin Barker, Feb 05 2018: (Start)
G.f.: 4*x*(2 - 70*x + 1029*x^2 - 8253*x^3 + 39228*x^4 - 112119*x^5 + 185785*x^6 - 160106*x^7 + 53244*x^8) / ((1 - x)*(1 - 2*x)*(1 - 3*x)*(1 - 4*x)*(1 - 5*x)*(1 - 6*x)*(1 - 7*x)^2*(1 - 8*x)).
a(n) = (-980 - 147*2^(2+n) - 245*2^(1+2*n) - 490*3^n - 245*2^(2+n)*3^n - 588*5^n + 7818*7^n + 735*8^n + 120*7^n*n) / 5880.
(End)
EXAMPLE
Some solutions for n=6:
..1....4....2....2....4....2....6....4....6....6....6....0....6....2....2....2
..0....7....6....5....6....7....3....6....3....0....7....2....3....5....0....7
..6....0....0....0....1....7....1....3....2....4....3....7....1....0....3....5
..1....3....0....1....4....5....5....6....1....3....2....7....7....7....7....0
..2....6....0....0....1....5....1....3....2....6....7....7....5....3....2....5
..3....6....0....7....1....1....4....1....2....1....7....6....7....6....3....5
CROSSREFS
Cf. A267471.
Sequence in context: A146885 A122093 A267231 * A227591 A268943 A269639
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jan 15 2016
STATUS
approved