login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A146885
a(n) = 8*Sum_{k=0..n} 7^k.
2
8, 64, 456, 3200, 22408, 156864, 1098056, 7686400, 53804808, 376633664, 2636435656, 18455049600, 129185347208, 904297430464, 6330082013256, 44310574092800, 310174018649608, 2171218130547264, 15198526913830856
OFFSET
0,1
FORMULA
From G. C. Greubel, Oct 12 2022: (Start)
a(n) = (4/3)*(7^(n+1) - 1).
a(n) = 8*A023000(n+1).
a(n) = 8*a(n-1) - 7*a(n-2).
G.f.: 8/((1-x)*(1-7*x)).
E.g.f.: (4/3)*(7*exp(7*x) - exp(x)). (End)
MATHEMATICA
a[n_]:= Sum[8*7^m, {m, 0, n}]; Table[a[n], {n, 0, 30}]
LinearRecurrence[{8, -7}, {8, 64}, 41] (* G. C. Greubel, Oct 12 2022 *)
PROG
(Magma) [n le 2 select 8^n else 8*Self(n-1) -7*Self(n-2): n in [1..41]]; // G. C. Greubel, Oct 12 2022
(SageMath) [(4/3)*(7^(n+1)-1) for n in range(41)] # G. C. Greubel, Oct 12 2022
KEYWORD
nonn,easy,less
AUTHOR
Roger L. Bagula, Nov 02 2008
STATUS
approved