|
|
A100774
|
|
a(n) = 2*(3^n - 1).
|
|
13
|
|
|
0, 4, 16, 52, 160, 484, 1456, 4372, 13120, 39364, 118096, 354292, 1062880, 3188644, 9565936, 28697812, 86093440, 258280324, 774840976, 2324522932, 6973568800, 20920706404, 62762119216, 188286357652, 564859072960, 1694577218884
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
a(n) is the number of steps which are made when generating all n-step nonreversing random walks that begin in a fixed point P on a two-dimensional square lattice. To make one step means to move along one edge on the lattice.
These are also the first local maxima reached in the Collatz trajectories of 2^n - 1. - David Rabahy, Oct 30 2017
Also the graph diameter of the n-Sierpinski carpet graph. - Eric W. Weisstein, Mar 13 2018
|
|
LINKS
|
|
|
FORMULA
|
a(n) = 2*(3^n - 1);
a(0) = 0, a(n) = 4*Sum_{i = 0 to n - 1} 3^i for n > 0;
|
|
MATHEMATICA
|
CoefficientList[Series[4 x/(1 - 4 x + 3 x^2), {x, 0, 20}], x] (* Eric W. Weisstein, Mar 13 2018 *)
|
|
PROG
|
|
|
CROSSREFS
|
Cf. A003462, A007051, A034472, A024023, A067771, A029858, A134931, A115099, A100774, A079004, A058481, A048473.
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
Pawel P. Mazur (Pawel.Mazur(AT)pwr.wroc.pl), Apr 06 2005
|
|
STATUS
|
approved
|
|
|
|