login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A067771
Number of vertices in Sierpiński triangle of order n.
22
3, 6, 15, 42, 123, 366, 1095, 3282, 9843, 29526, 88575, 265722, 797163, 2391486, 7174455, 21523362, 64570083, 193710246, 581130735, 1743392202, 5230176603, 15690529806, 47071589415, 141214768242, 423644304723, 1270932914166
OFFSET
0,1
COMMENTS
An order 0 Sierpiński triangle is a triangle. Order n+1 is formed from three copies of order n by identifying pairs of corner vertices of each pair of triangles. - Allan Bickle, Aug 03 2024
This sequence represents another link from the product factor space Q X Q / {(1,1), (-1, -1)} to Sierpiński's triangle. The first "link" found was to sequence A048473. - Creighton Dement, Aug 05 2004
a(n) equals the number of orbits of the finite group PSU(3,3^n) on subsets of size 3 of the 3^(3n)+1 isotropic points of a unitary 3 space. - Paul M. Bradley, Jan 31 2017
For n >= 1, number of edges in a planar Apollonian graph at iteration n. - Andrew D. Walker, Jul 08 2017
Also the total domination number of the (n+3)-Dorogovtsev-Goltsev-Mendes graph, using the convention DGM(0) = P_2. - Eric W. Weisstein, Jan 14 2024
REFERENCES
Peter Wessendorf and Kristina Downing, personal communication.
LINKS
Allan Bickle, Properties of Sierpinski Triangle Graphs, Springer PROMS 448 (2021) 295-303.
A. Hinz, S. Klavzar, and S. Zemljic, A survey and classification of Sierpinski-type graphs, Discrete Applied Mathematics 217 3 (2017), 565-600.
András Kaszanyitzky, Triangular fractal approximating graphs and their covering paths and cycles, arXiv:1710.09475 [math.CO], 2017. See Table 2.
C. Lanius, Fractals.
Eric Weisstein's World of Mathematics, Dorogovtsev-Goltsev-Mendes Graph.
Eric Weisstein's World of Mathematics, Sierpiński Gasket Graph.
Eric Weisstein's World of Mathematics, Total Domination Number.
FORMULA
a(n) = (3/2)*(3^n + 1).
a(n) = 3 + 3^1 + 3^2 + 3^3 + 3^4 + ... + 3^n = 3 + Sum_{k=1..n} 3^n.
a(n) = 3*A007051(n).
a(0) = 3, a(n) = a(n-1) + 3^n. a(n) = (3/2)*(1+3^n). - Zak Seidov, Mar 19 2007
a(n) = 4*a(n-1) - 3*a(n-2).
G.f.: 3*(1-2*x)/((1-x)*(1-3*x)). - Colin Barker, Jan 10 2012
a(n) = A233774(2^n). - Omar E. Pol, Dec 16 2013
a(n) = 3*a(n-1) - 3. - Zak Seidov, Oct 26 2014
E.g.f.: 3*(exp(x) + exp(3*x))/2. - Stefano Spezia, Feb 09 2021
a(n) = A029858(n+1) + 3. - Allan Bickle, Aug 03 2024
EXAMPLE
Order 0 is a triangle, so a(0) = 3.
Order 1 has three corners (degree 2) and three other vertices, so a(1) = 6.
3 example graphs: o
/ \
o---o
/ \ / \
o o---o---o
/ \ / \ / \
o o---o o---o o---o
/ \ / \ / \ / \ / \ / \ / \
o---o o---o---o o---o---o---o---o
Graph: S_1 S_2 S_3
Vertices: 3 6 15
Edges: 3 9 27
MATHEMATICA
LinearRecurrence[{4, -3}, {3, 6}, 26] (* or *)
CoefficientList[Series[3 (1 - 2 x)/((1 - x) (1 - 3 x)), {x, 0, 25}], x] (* Michael De Vlieger, Feb 02 2017 *)
Table[3/2 (3^n + 1), {n, 0, 20}] (* Eric W. Weisstein, Jan 14 2024 *)
3/2 (3^Range[0, 20] + 1) (* Eric W. Weisstein, Jan 14 2024 *)
PROG
(Magma) [(3/2)*(1+3^n): n in [0..30]]; // Vincenzo Librandi, Jun 20 2011
CROSSREFS
Cf. A048473.
Cf. A007283, A029858, A067771, A193277, A233774, A233775, A246959 (Sierpiński triangle graphs).
Sequence in context: A140824 A001433 A005368 * A289678 A337326 A056382
KEYWORD
nonn,easy
AUTHOR
Martin Wessendorf (martinw(AT)mail.ahc.umn.edu), Feb 09 2002
EXTENSIONS
More terms from Benoit Cloitre, Feb 22 2002
STATUS
approved