login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A001433
Number of graphs with n nodes and n-1 edges.
(Formerly M2588 N1024)
9
1, 1, 1, 3, 6, 15, 41, 115, 345, 1103, 3664, 12763, 46415, 175652, 691001, 2821116, 11932174, 52211412, 236007973, 1100528508, 5287050500, 26134330813, 132760735671, 692294900849, 3701754158688, 20275893222445, 113657560920970, 651449039159673, 3814790900995022, 22805438484189851
OFFSET
1,4
REFERENCES
J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 146.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
M. L. Stein and P. R. Stein, Enumeration of Linear Graphs and Connected Linear Graphs up to p = 18 Points. Report LA-3775, Los Alamos Scientific Laboratory of the University of California, Los Alamos, NM, Oct 1967
MATHEMATICA
Needs["Combinatorica`"]
Table[ NumberOfGraphs[n, n-1], {n, 1, 25}] (* Robert G. Wilson v *)
(* Second program (not needing Combinatorica): *)
permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
edges[v_, t_] := Product[Product[g = GCD[v[[i]], v[[j]]]; t[v[[i]]* v[[j]]/g]^g, {j, 1, i - 1}], {i, 2, Length[v]}]*Product[c = v[[i]]; t[c]^Quotient[c - 1, 2]*If[OddQ[c], 1, t[c/2]], {i, 1, Length[v]}];
a[n_] := a[n] = Module[{s = 0}, Do[s += permcount[p]*edges[p, 1 + x^# &], {p, IntegerPartitions[n]}]; s/n!] // Expand // SeriesCoefficient[#, {x, 0, n-1}]&;
Table[Print[n, " ", a[n]]; a[n], {n, 1, 35}] (* Jean-François Alcover, Aug 18 2022, after Andrew Howroyd in A008406 *)
CROSSREFS
Cf. A008406.
Sequence in context: A218777 A152799 A140824 * A005368 A067771 A289678
KEYWORD
nonn,easy,nice
EXTENSIONS
More terms from Vladeta Jovovic, Jan 15 2000
STATUS
approved