OFFSET
0,5
COMMENTS
The labeled version is A116508. - Gus Wiseman, Feb 22 2024
REFERENCES
J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 146.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..50 (terms 1..40 from Sean A. Irvine)
CombOS - Combinatorial Object Server, Generate graphs
M. L. Stein and P. R. Stein, Enumeration of Linear Graphs and Connected Linear Graphs up to p = 18 Points. Report LA-3775, Los Alamos Scientific Laboratory of the University of California, Los Alamos, NM, Oct 1967.
EXAMPLE
From Gus Wiseman, Feb 22 2024: (Start)
Representatives of the a(0) = 1 through a(5) = 6 graphs:
{} . . {12,13,23} {12,13,14,23} {12,13,14,15,23}
{12,13,24,34} {12,13,14,23,24}
{12,13,14,23,25}
{12,13,14,23,45}
{12,13,14,25,35}
{12,13,24,35,45}
(End)
MATHEMATICA
(* first do *) Needs["Combinatorica`"] (* then *) Table[ NumberOfGraphs[n, n], {n, 24}] (* Robert G. Wilson v, Mar 22 2011 *)
brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{(Union@@m)[[i]], p[[i]]}, {i, Length[p]}])], {p, Permutations[Range[Length[Union@@m]]]}]]];
Table[Length[Union[brute /@ Subsets[Subsets[Range[n], {2}], {n}]]], {n, 0, 5}] (* Gus Wiseman, Feb 22 2024 *)
PROG
(PARI) a(n) = polcoef(G(n, O(x*x^n)), n) \\ G defined in A008406. - Andrew Howroyd, Feb 02 2024
KEYWORD
nonn,easy,nice
AUTHOR
EXTENSIONS
More terms from Vladeta Jovovic, Jan 07 2000
a(0)=1 prepended by Andrew Howroyd, Feb 02 2024
STATUS
approved